SciPy似乎在它自己的命名空间中提供了NumPy的大部分(但不是所有[1])函数。换句话说,如果有一个名为numpy的函数。Foo,几乎可以肯定有一个sciy。Foo。大多数情况下,两者看起来完全相同,甚至经常指向相同的函数对象。

有时候,它们是不同的。举一个最近出现的例子:

numpy。log10是一个返回负参数nan的ufunc; scipy。Log10返回负参数的复杂值,并且看起来不是一个ufunc。

对于log、log2和logn也是如此,但对于log1p[2]则不然。

另一方面,numpy。Exp和scipy。Exp似乎是同一个ufunc的不同名称。scipy也是如此。Log1p和numpy.log1p。

另一个例子是numpy.linalg.solve vs scipy.linalg.solve。它们很相似,但后者比前者提供了一些额外的功能。

为什么会出现明显的重复?如果这意味着将numpy大量导入到scipy名称空间中,那么为什么会出现行为上的细微差异和缺少函数呢?是否有一些总体逻辑可以帮助理清混乱?

[1] numpy。分钟,numpy。马克斯,numpy。Abs和其他一些名称在scipy名称空间中没有对应的名称。

[2]使用NumPy 1.5.1和SciPy 0.9.0rc2测试。


当前回答

来自维基百科(http://en.wikipedia.org/wiki/NumPy#History):

数字代码被用来制造 它更易于维护和灵活 足以实现新功能 Numarray。这个新项目是 SciPy。避免安装整体 来获取一个数组对象, 这个新包裹被分开了 叫NumPy。

Scipy依赖于numpy,为了方便起见,它将许多numpy函数导入到它的命名空间中。

其他回答

除了SciPy FAQ中描述的复制主要是为了向后兼容外,NumPy文档中也进一步澄清了这一点

可选的scipy加速例程(numpy.dual) 可由Scipy加速的函数的别名。 可以构建SciPy以使用加速或改进的库 FFTs,线性代数和特殊函数。这个模块允许 开发人员透明地支持这些加速功能时 SciPy是可用的,但仍然支持只安装了SciPy的用户 NumPy。

为了简单起见,这些是:

线性代数 FFT 一类改进的0阶贝塞尔函数

此外,从SciPy教程:

SciPy的顶层还包含NumPy和 numpy.lib.scimath。但是,最好直接从 而是NumPy模块。

因此,对于新的应用程序,您应该更喜欢使用在SciPy顶层复制的NumPy版本的数组操作。对于上面列出的域,您应该选择SciPy中的域,并在必要时检查NumPy中的向后兼容性。

根据我个人的经验,我使用的大多数数组函数都存在于NumPy的顶层(random除外)。然而,所有特定于领域的例程都存在于SciPy的子包中,因此我很少使用来自SciPy顶层的任何东西。

Regarding the linalg package - the scipy functions will call lapack and blas, which are available in highly optimised versions on many platforms and offer very good performance, particularly for operations on reasonably large dense matrices. On the other hand, they are not easy libraries to compile, requiring a fortran compiler and many platform specific tweaks to get full performance. Therefore, numpy provides simple implementations of many common linear algebra functions which are often good enough for many purposes.

从SciPy FAQ来看,NumPy的一些函数是由于历史原因而出现的,而这是应该的 只有在SciPy:

What is the difference between NumPy and SciPy? In an ideal world, NumPy would contain nothing but the array data type and the most basic operations: indexing, sorting, reshaping, basic elementwise functions, et cetera. All numerical code would reside in SciPy. However, one of NumPy’s important goals is compatibility, so NumPy tries to retain all features supported by either of its predecessors. Thus NumPy contains some linear algebra functions, even though these more properly belong in SciPy. In any case, SciPy contains more fully-featured versions of the linear algebra modules, as well as many other numerical algorithms. If you are doing scientific computing with python, you should probably install both NumPy and SciPy. Most new features belong in SciPy rather than NumPy.

这就解释了为什么scipy.linalg.solve比numpy.linalg.solve提供了一些额外的特性。

我没有看到塞瑟姆·莫顿对相关问题的回答

在SciPy文档介绍的末尾有一个简短的注释:

另一个有用的命令是source。当给出一个用Python编写的函数作为参数时,它会打印出该函数的源代码列表。这对于学习算法或准确理解函数是什么很有帮助 处理它的参数。此外,不要忘记Python命令dir 用于查看模块或包的名称空间。

我认为这将允许对所涉及的所有包有足够知识的人准确地区分一些scipy和numpy函数之间的差异(这对我回答log10问题完全没有帮助)。我肯定没有这方面的知识,但来源确实表明scipy.linalg.solve和numpy.linalg.solve以不同的方式与lapack交互;

Python 2.4.3 (#1, May  5 2011, 18:44:23) 
[GCC 4.1.2 20080704 (Red Hat 4.1.2-50)] on linux2
>>> import scipy
>>> import scipy.linalg
>>> import numpy
>>> scipy.source(scipy.linalg.solve)
In file: /usr/lib64/python2.4/site-packages/scipy/linalg/basic.py

def solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0,
          debug = 0):
    """ solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0) -> x

    Solve a linear system of equations a * x = b for x.

    Inputs:

      a -- An N x N matrix.
      b -- An N x nrhs matrix or N vector.
      sym_pos -- Assume a is symmetric and positive definite.
      lower -- Assume a is lower triangular, otherwise upper one.
               Only used if sym_pos is true.
      overwrite_y - Discard data in y, where y is a or b.

    Outputs:

      x -- The solution to the system a * x = b
    """
    a1, b1 = map(asarray_chkfinite,(a,b))
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError, 'expected square matrix'
    if a1.shape[0] != b1.shape[0]:
        raise ValueError, 'incompatible dimensions'
    overwrite_a = overwrite_a or (a1 is not a and not hasattr(a,'__array__'))
    overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))
    if debug:
        print 'solve:overwrite_a=',overwrite_a
        print 'solve:overwrite_b=',overwrite_b
    if sym_pos:
        posv, = get_lapack_funcs(('posv',),(a1,b1))
        c,x,info = posv(a1,b1,
                        lower = lower,
                        overwrite_a=overwrite_a,
                        overwrite_b=overwrite_b)
    else:
        gesv, = get_lapack_funcs(('gesv',),(a1,b1))
        lu,piv,x,info = gesv(a1,b1,
                             overwrite_a=overwrite_a,
                             overwrite_b=overwrite_b)

    if info==0:
        return x
    if info>0:
        raise LinAlgError, "singular matrix"
    raise ValueError,\
          'illegal value in %-th argument of internal gesv|posv'%(-info)

>>> scipy.source(numpy.linalg.solve)
In file: /usr/lib64/python2.4/site-packages/numpy/linalg/linalg.py

def solve(a, b):
    """
    Solve the equation ``a x = b`` for ``x``.

    Parameters
    ----------
    a : array_like, shape (M, M)
        Input equation coefficients.
    b : array_like, shape (M,)
        Equation target values.

    Returns
    -------
    x : array, shape (M,)

    Raises
    ------
    LinAlgError
        If `a` is singular or not square.

    Examples
    --------
    Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``:

    >>> a = np.array([[3,1], [1,2]])
    >>> b = np.array([9,8])
    >>> x = np.linalg.solve(a, b)
    >>> x
    array([ 2.,  3.])

    Check that the solution is correct:

    >>> (np.dot(a, x) == b).all()
    True

    """
    a, _ = _makearray(a)
    b, wrap = _makearray(b)
    one_eq = len(b.shape) == 1
    if one_eq:
        b = b[:, newaxis]
    _assertRank2(a, b)
    _assertSquareness(a)
    n_eq = a.shape[0]
    n_rhs = b.shape[1]
    if n_eq != b.shape[0]:
        raise LinAlgError, 'Incompatible dimensions'
    t, result_t = _commonType(a, b)
#    lapack_routine = _findLapackRoutine('gesv', t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgesv
    else:
        lapack_routine = lapack_lite.dgesv
    a, b = _fastCopyAndTranspose(t, a, b)
    pivots = zeros(n_eq, fortran_int)
    results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Singular matrix'
    if one_eq:
        return wrap(b.ravel().astype(result_t))
    else:
        return wrap(b.transpose().astype(result_t))

这也是我的第一个帖子,所以如果我应该改变什么,请告诉我。

来自维基百科(http://en.wikipedia.org/wiki/NumPy#History):

数字代码被用来制造 它更易于维护和灵活 足以实现新功能 Numarray。这个新项目是 SciPy。避免安装整体 来获取一个数组对象, 这个新包裹被分开了 叫NumPy。

Scipy依赖于numpy,为了方便起见,它将许多numpy函数导入到它的命名空间中。