何为使用yield
Python 中的关键字?
比如说,我在试着理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法_get_child_candidates
是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.
放弃是一个对象
A A Areturn
在函数中返回单一值。
如果您愿意,如果需要函数返回一大批值,使用yield
.
更重要的是yield
是 a 是障碍屏障.
就像CUDA语言中的屏障, 它不会转移控制 直到它完成。
也就是说,它会运行您函数的代码 从开始直到启动yield
。然后,它将返回循环的第一个值。
然后,其他每通电话都会运行您在函数中写下的循环, 返回下一个值, 直到没有任何值可以返回 。
从方案拟订的角度来看,迭代器是按下列方式执行的:Tunks 缩图.
实施迭代机、发电机和用于同时执行的线性集合,等等,作为杜丘,一种用途发送到关闭对象的信件它有一个调度员, 和给“ 消息” 的发件人解答.
"下一个"是发送到结束处的电文,该电文由“创建者”创建。亚列"打电话。
执行此计算有很多方法。 我使用突变, 但可以通过返回当前值和下一个生成者( 生成者) 返回当前值和下一个生成者( 生成者) 来进行这种不突变的计算( 生成者)优惠透明Racket使用一些中间语言对初始方案进行一系列转换,其中之一是进行这种改写,使产量经营者与较简单的经营者以某种语言进行转换。
这是如何重写产量的演示, 它使用 R6RS 的结构, 但语义与 Python 的相同 。 这是相同的计算模式, 只需要修改语法, 才能使用 Python 的 产量重写 。
Welcome to Racket v6.5.0.3.
-> (define gen
(lambda (l)
(define yield
(lambda ()
(if (null? l)
'END
(let ((v (car l)))
(set! l (cdr l))
v))))
(lambda(m)
(case m
('yield (yield))
('init (lambda (data)
(set! l data)
'OK))))))
-> (define stream (gen '(1 2 3)))
-> (stream 'yield)
1
-> (stream 'yield)
2
-> (stream 'yield)
3
-> (stream 'yield)
'END
-> ((stream 'init) '(a b))
'OK
-> (stream 'yield)
'a
-> (stream 'yield)
'b
-> (stream 'yield)
'END
-> (stream 'yield)
'END
->
在皮顿generators
(一种特殊类型的iterators
)用于产生一系列数值和yield
关键字就和return
生成功能关键字。
另一件有趣的事yield
关键字在保存state
a 发电机功能.
所以,我们可以设定number
每次对一个不同的值generator
产值。
以下是一个例子:
def getPrimes(number):
while True:
if isPrime(number):
number = yield number # a miracle occurs here
number += 1
def printSuccessivePrimes(iterations, base=10):
primeGenerator = getPrimes(base)
primeGenerator.send(None)
for power in range(iterations):
print(primeGenerator.send(base ** power))
所有的答案都是伟大的, 但对于新人来说有点困难。
我猜你已经学会了return
语句。
作为类比,return
和yield
双胞胎。return
意指“返回和停止”,而“真正”意指“返回,但继续”
- 尝试获得 num_ list 列表
return
.
def num_list(n):
for i in range(n):
return i
运行它:
In [5]: num_list(3)
Out[5]: 0
你看,你只得到一个数字 而不是他们的名单。return
永远不允许你快乐地胜利, 仅仅一次执行,然后退出。
- 来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来
yield
替换return
与yield
:
In [10]: def num_list(n):
...: for i in range(n):
...: yield i
...:
In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>
In [12]: list(num_list(3))
Out[12]: [0, 1, 2]
现在,你赢得了所有的数字。
与return
运行一次,停止一次,yield
计划运行时间。您可以解释return
计为return one of them
, 和yield
计为return all of them
。这被称为iterable
.
- 再来一步,我们可以改写
yield
声明的语中return
In [15]: def num_list(n):
...: result = []
...: for i in range(n):
...: result.append(i)
...: return result
In [16]: num_list(3)
Out[16]: [0, 1, 2]
这是核心yield
.
列表之间的差别return
输出和对象yield
输出为 :
您将总是从列表对象中获取 [0, 1, 2] 列表对象, 但只能从“ 对象” 中获取它们yield
输出一次。 所以, 它有一个新名称generator
对象显示于Out[11]: <generator object num_list at 0x10327c990>
.
最后,作为格罗克语的比喻:
return
和yield
双胞胎
list
和generator
双胞胎
简单使用实例 :
>>> def foo():
yield 100
yield 20
yield 3
>>> for i in foo(): print(i)
100
20
3
>>>
如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。
在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。
在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。