何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

yield用于创建generator。如果将生成器视为一个迭代器,每个迭代都会给您带来价值。当您在循环中使用收益率时,会得到一个生成对象,您可以用该对象从循环中以迭接方式从循环中获取项目

其他回答

yield用于创建generator。如果将生成器视为一个迭代器,每个迭代都会给您带来价值。当您在循环中使用收益率时,会得到一个生成对象,您可以用该对象从循环中以迭接方式从循环中获取项目

我本打算张贴“Beazley的“Python:基本参考”第19页,

也注意到yield可以在共程中使用,作为发电机功能的双重用途。 虽然这与您的代码片段不同,(yield)可以在函数中用作表达式。当调用者向使用该函数的方法发送值时send()方法,然后在下一个(yield)遇到的语句。

发电机和共同路线是建立数据流类型应用程序的酷酷方式。yield函数中的语句。

对于那些更喜欢最低限度工作实例的人来说,考虑一下这次交互式的Python会议:

>>> def f():
...   yield 1
...   yield 2
...   yield 3
... 
>>> g = f()
>>> for i in g:
...   print(i)
... 
1
2
3
>>> for i in g:
...   print(i)
... 
>>> # Note that this time nothing was printed

要理解发电机的产量功能,人们必须理解发电机是什么。 此外,在理解发电机之前,你必须理解易可动的。可操作性:对于创建列表,您自然需要能够逐项阅读每个元素。逐项阅读其项目的过程称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

(我下面的回答只从使用Python发电机的角度,而不是从使用Python发电机的角度,而不是从使用Python发电机的角度来回答发电机机制基本实施,这涉及一些玩弄堆叠和堆积操纵的把戏。 ))

何时yield使用代替return在 python 函数中,该函数被转换为特殊的东西,称为generator function该函数返回generator类型。缩略yield关键字是通知 Python 编译者专门处理此函数的标志。正常函数一旦从中返回某些值, 正常函数就会终止。 但是, 在编译器的帮助下, 生成器函数将会终止 。能够被想象到即,执行环境将恢复,执行将持续到最后一年。直到你明确要求返回,这会引起StopIteration选项(这也是迭代协议的一部分),或达到函数的结尾。我发现很多关于generator但这个1个调自自functional programming perspective是最可消化的。

(现在我想谈一下为什么generatoriterator我希望这能帮助你掌握基本动机和基本动机这一概念以其他语言出现,如C#。 )

据我所知,当我们想要处理一堆数据时, 我们通常先把数据存放在某处,然后一个一个地处理。但是这个是。幼天如果数据量很大, 事先将数据全部储存起来是昂贵的 。而不是储存data为什么不直接储存某种metadata间接,即:the logic how the data is computed.

有两种方法可以包扎这类元数据。

  1. OO 方法,我们包封元数据as a class这就是所谓的iterator执行滚动协议(即__next__(), 和__iter__()这也是人们所普遍看到的方法。电动电机设计图案.
  2. 功能方法,我们包封元数据as a function这就是所谓的generator function但是在兜帽帽下, 返回的人generator object仍为IS-A因为它还执行传动协议 。

无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。