何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

缩略yieldPython 语句中的 Python 语句返回一个发电机。 Python 中的发电机是一个函数返回续续(具体地说,是一种共同的例行公事,但延续是了解情况的一般机制)。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般性的形式出现的延续可以采取两种方式实施。call/cc方式,程序堆放的堆放实际上被保存, 当继续被引用时, 堆放的堆放就会被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。


现在让我们来谈谈Python的发电机。发电机是一个特定的子类型 继续。而一般而言,继续保留能够拯救a计算计算(即程序调用堆叠)发电机只能保存电离层的迭代状态。振动器虽然这一定义对发电机的某些使用情况略有误导性,例如:

def f():
  while True:
    yield 4

这显然是一个合理的可循环性, 其行为是明确定义的, 每当发电机转动时, 它就会返回 4 个( 并且永远这样做 ) 。 但是,在思考迭代器时, 可能不会想到这种典型的可循环性( 即, , ) 。for x in collection: do_something(x)这个例子说明了发电机的功率:如果有什么是迭代器,发电机可以挽救其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态。 这意味着, 继续的威力比发电机大得多, 并且发电机也容易得多, 也容易得多。 语言设计师更容易执行, 程序设计员更容易使用( 如果您有时间燃烧, 试着阅读和理解)此页面的续续和调用/ cc).

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

时 时 时yield被调用,它告诉函数返回一个延续。当再次调用函数时,它从它离开的开始。因此,在假假假代码(即不是伪代码,但不包括代码)中,生成器的next方法基本上如下:

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

位于yield关键字实际上是实际生成功能的合成糖, 基本上类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假代号,而Python发电机的实际安装则更为复杂。 但是,作为了解正在发生的情况的一种练习,试图在不使用发电机物体的情况下,使用持续的传承风格来实施发电机物体。yield关键字。

其他回答

yield允许您更聪明地写字for- 通过将循环部分计入一个便于再利用的单独方法。

假设你需要环绕电子表格的所有非空白行,对每行都做一些事情。

for i, row in df.iterrows(): #from the panda package for reading excel 
  if row = blank: # pseudo code, check if row is non-blank...
    continue
  if past_last_row: # pseudo code, check for end of input data
    break
  #### above is boring stuff, below is what we actually want to do with the data ###
  f(row)

如果你需要打电话g(row)在一个类似的循环中,你可能会发现自己重复for语句加有效行的检查,这是枯燥、复杂和易出错的。我们不想重复(DRY 原则) 。

您想要将检查每个记录的代码与实际处理行的代码区分开来, 比如f(row)g(row) .

您可以做一个函数, 将 f() 作为输入参数, 但使用要简单得多yield在一个方法中做所有关于检查有效行以准备拨打 f () 的无聊内容:

def valid_rows():
  for i, row in df.iterrows(): # iterate over each row of spreadsheet
    if row == blank: # pseudo code, check if row is non-blank...
      continue
    if past_last_row: # pseudo code, check for end of input data
      break
    yield i, row

请注意,方法的每次调用将返回下一行,但如果所有行都读取,且for结束, 方法将return通常。下一次调用将开始新的for循环。

现在您可以在数据上写入迭代, 而不必重复对有效行进行无趣的检查( 现在根据自己的方法来计算) , 例如 :

for i, row in valid_rows():
  f(row)

for i, row in valid_rows():
  g(row)

nr_valid_rows = len(list(valid_rows()))

仅此而已。 请注意, 我还没有使用诸如 迭代器、 生成器、 协议、 共同常规等术语 。 我认为这个简单的例子 适用于我们日常的许多编码 。

yield用于创建generator。如果将生成器视为一个迭代器,每个迭代都会给您带来价值。当您在循环中使用收益率时,会得到一个生成对象,您可以用该对象从循环中以迭接方式从循环中获取项目

yield简直就像return区别在于,下次你打电话给发电机时,从最后一次呼叫开始执行。yield与返回不同的语句,当生成时, 堆叠框架不会被清理, 但是控件会被转回调用方, 所以下次调用函数时, 它的状态将会恢复 。

对于您的代码,函数get_child_candidates动作就像一个循环器,这样当您扩展列表时,它会一次向新列表添加一个元素。

list.extend在你公布的代码样本中, 只需将图普还给列表, 并附加到列表中, 就会更加清晰 。

一个容易理解它是什么的简单例子:yield

def f123():
    for _ in range(4):
        yield 1
        yield 2


for i in f123():
    print (i)

产出是:

1 2 1 2 1 2 1 2

缩略yieldKeyword 简单收集返回结果。yield类似return +=