何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

从方案拟订的角度来看,迭代器是按下列方式执行的:Tunks 缩图.

实施迭代机、发电机和用于同时执行的线性集合,等等,作为杜丘,一种用途发送到关闭对象的信件它有一个调度员, 和给“ 消息” 的发件人解答.

"下一个"是发送到结束处的电文,该电文由“创建者”创建。亚列"打电话。

执行此计算有很多方法。 我使用突变, 但可以通过返回当前值和下一个生成者( 生成者) 返回当前值和下一个生成者( 生成者) 来进行这种不突变的计算( 生成者)优惠透明Racket使用一些中间语言对初始方案进行一系列转换,其中之一是进行这种改写,使产量经营者与较简单的经营者以某种语言进行转换。

这是如何重写产量的演示, 它使用 R6RS 的结构, 但语义与 Python 的相同 。 这是相同的计算模式, 只需要修改语法, 才能使用 Python 的 产量重写 。

Welcome to Racket v6.5.0.3.

-> (define gen
     (lambda (l)
       (define yield
         (lambda ()
           (if (null? l)
               'END
               (let ((v (car l)))
                 (set! l (cdr l))
                 v))))
       (lambda(m)
         (case m
           ('yield (yield))
           ('init  (lambda (data)
                     (set! l data)
                     'OK))))))
-> (define stream (gen '(1 2 3)))
-> (stream 'yield)
1
-> (stream 'yield)
2
-> (stream 'yield)
3
-> (stream 'yield)
'END
-> ((stream 'init) '(a b))
'OK
-> (stream 'yield)
'a
-> (stream 'yield)
'b
-> (stream 'yield)
'END
-> (stream 'yield)
'END
->

其他回答

简单解答

函数至少包含一个时yield语句,函数自动成为发电机功能。当您调用发电机功能时, python 在发电机功能中执行代码,直到yield发生声明。yield当您再次调用发电机功能时, python 继续从冻结位置执行发电机功能中的代码,直到yield发电机函数执行代码直到发电机功能用完时没有yield语句。

基准基准基准基准基准基准基准

创建列表并返回它 :

def my_range(n):
    my_list = []
    i = 0
    while i < n:
        my_list.append(i)
        i += 1
    return my_list

@profile
def function():
    my_sum = 0
    my_values = my_range(1000000)
    for my_value in my_values:
        my_sum += my_value

function()

结果有:

Total time: 1.07901 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     9                                           @profile
    10                                           def function():
    11         1          1.1      1.1      0.0      my_sum = 0
    12         1     494875.0 494875.0     45.9      my_values = my_range(1000000)
    13   1000001     262842.1      0.3     24.4      for my_value in my_values:
    14   1000000     321289.8      0.3     29.8          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     9   40.168 MiB   40.168 MiB           1   @profile
    10                                         def function():
    11   40.168 MiB    0.000 MiB           1       my_sum = 0
    12   78.914 MiB   38.746 MiB           1       my_values = my_range(1000000)
    13   78.941 MiB    0.012 MiB     1000001       for my_value in my_values:
    14   78.941 MiB    0.016 MiB     1000000           my_sum += my_value

在飞行上生成值 :

def my_range(n):
    i = 0
    while i < n:
        yield i
        i += 1

@profile
def function():
    my_sum = 0
    
    for my_value in my_range(1000000):
        my_sum += my_value

function()

结果有:

Total time: 1.24841 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           @profile
     8                                           def function():
     9         1          1.1      1.1      0.0      my_sum = 0
    10
    11   1000001     895617.3      0.9     71.7      for my_value in my_range(1000000):
    12   1000000     352793.7      0.4     28.3          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     7   40.168 MiB   40.168 MiB           1   @profile
     8                                         def function():
     9   40.168 MiB    0.000 MiB           1       my_sum = 0
    10
    11   40.203 MiB    0.016 MiB     1000001       for my_value in my_range(1000000):
    12   40.203 MiB    0.020 MiB     1000000           my_sum += my_value

摘要摘要摘要

生成器函数需要稍多一点时间来执行, 而不是返回列表但少用内存的函数 。

yield:

  • 可以通过停止函数从函数返回一个值多次。
  • 可使用from和它一样yield from.
  • 用于返回大数据时,将其分为小部分数据,以防止大量使用内存。

例如,test()可在以下返回'One', 'Two'['Three', 'Four']以一一一一一一一一一一一一一停止test()so so, so, so, so, so, so, so, so, so,test()停止返回共3倍test()总共3次:

def test():
    yield 'One'                  # Stop, return 'One' and resume 
    yield 'Two'                  # Stop, return 'Two' and resume
    yield from ['Three', 'Four'] # Stop and return ['Three', 'Four'] 

下面这三套代码可以调用test()打印和打印'One', 'Two', 'Three''Four':

for x in test():
    print(x)
x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
x = test()
print(x.__next__())
print(x.__next__())
print(x.__next__())
print(x.__next__())

其结果是:

$ python yield_test.py
One
Two
Three
Four

此外,在使用returnyield,没有办法从return:

def test():
    yield 'One' 
    yield 'Two'
    yield from ['Three', 'Four']
    return 'Five' # 'Five' cannot be got

x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
print(next(x)) # Here

因此,在试图获取'Five':

$ python yield_test.py 
One
Two
Three
Four
Traceback (most recent call last):
  File "C:\Users\kai\yield_test.py", line 12, in <module>
    print(next(x))
          ^^^^^^^
StopIteration: Five

缩略yieldKeyword 简单收集返回结果。yield类似return +=

放弃是一个对象

A A Areturn在函数中返回单一值。

如果您愿意,如果需要函数返回一大批值,使用yield.

更重要的是yield是 a 是障碍屏障.

就像CUDA语言中的屏障, 它不会转移控制 直到它完成。

也就是说,它会运行您函数的代码 从开始直到启动yield。然后,它将返回循环的第一个值。

然后,其他每通电话都会运行您在函数中写下的循环, 返回下一个值, 直到没有任何值可以返回 。

这样想吧:

a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a.next()方法。因此,一个产出式的函数最终会变成这样:

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

更深入了解幕后发生的事for循环可以重写到此 :

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我应当指出,这一点a 为说明目的过于简化。 )