何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

理解什么yield确实,你必须明白什么是发电机发电机。在您能够理解发电机之前,您必须理解易可动的.

易变性

创建列表时,您可以逐项阅读其项目。逐项阅读其项目被称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

mylist易 易 易 性。当您使用对列表的理解时,会创建列表,因此,可以循环:

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4

能够使用的一切 " 。for... in..."是可循环的;lists, strings文档...

这些可替换的功能是实用的,因为您可以随心所欲地阅读,但您将所有值都存储在记忆中,当您拥有很多值时,这并不总是你想要的。

发电机发电机

发电机是迭代器,是一种可循环的您只能循环一次。发电机不会存储所有值的内存,它们会在飞上生成值:

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

除了你用过的一样()代替[]但是,你,你无法不能表现 表现表现for i in mygenerator第二次,因为发电机只能使用一次:它们计算0,然后忘记它,计算1,最后计算4,一个一个。

产量d

yield是一个关键字,它被像return,但该函数将返回一个发电机。

>>> def create_generator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = create_generator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

这是一个毫无用处的例子, 但当你知道你的功能会返回 一大堆的值时, 它就方便了, 你只需要读一次。

师傅yield你必须明白当您调用函数时,函数体中的代码不会运行。函数只返回生成对象, 这有点棘手 。

然后,你的代码会继续 从它每次离开的代码开始for使用发电机。

现在,硬的部分:

第一次for调用从您函数创建的生成器对象,它将运行您函数中的代码,从开始一直运行到点击yield,然后它返回循环的第一个值。然后,每次随后的呼叫将运行您在函数中写入的循环的再次迭代,然后返回下一个值。这将一直持续到发电机被视为空,当函数运行时没有打中yield。这可能是因为循环已经结束,或者因为你不再满足"if/else".


您的代码解释

发电机:

# Here you create the method of the node object that will return the generator
def _get_child_candidates(self, distance, min_dist, max_dist):

    # Here is the code that will be called each time you use the generator object:

    # If there is still a child of the node object on its left
    # AND if the distance is ok, return the next child
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild

    # If there is still a child of the node object on its right
    # AND if the distance is ok, return the next child
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild

    # If the function arrives here, the generator will be considered empty
    # there are no more than two values: the left and the right children

调用者 :

# Create an empty list and a list with the current object reference
result, candidates = list(), [self]

# Loop on candidates (they contain only one element at the beginning)
while candidates:

    # Get the last candidate and remove it from the list
    node = candidates.pop()

    # Get the distance between obj and the candidate
    distance = node._get_dist(obj)

    # If the distance is ok, then you can fill in the result
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)

    # Add the children of the candidate to the candidate's list
    # so the loop will keep running until it has looked
    # at all the children of the children of the children, etc. of the candidate
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result

本代码包含几个智能部分 :

  • 循环在列表中反复出现, 但列表会扩展, 而循环正在迭代中 。 这是一个简洁的方法 来查看所有这些嵌套的数据, 即使它有点危险, 因为您可以以无限循环结束 。 在这种情况下,candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))耗尽发电机的所有值,但while保持创建新生成的生成对象, 从而产生与前一个生成对象不同的值, 因为它不应用在同一节点上 。

  • 缩略extend()方法是一种列表对象方法,该方法预计可循环并增加其值到列表中。

通常,我们向它传递一份清单:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但在你的代码中,它有一个发电机, 这是很好的,因为:

  1. 您不需要两次阅读数值 。
  2. 你可能有很多孩子 你不想把他们都保存在记忆中

之所以有效,是因为 Python 并不在意一种方法的论据是否是一个列表。 Python 期望它能用字符串、列表、图普勒和生成器来操作。 这叫做鸭字打字, 也是Python之所以如此酷的原因之一。 但是这是另一个故事, 另一个问题...

您可以在这里停下来,或者读一下,看一个生成器的先进使用:

控制发电机耗竭

>>> class Bank(): # Let's create a bank, building ATMs
...    crisis = False
...    def create_atm(self):
...        while not self.crisis:
...            yield "$100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
...    print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

注:Python 3, 用于 Python 3, 使用print(corner_street_atm.__next__())print(next(corner_street_atm))

它可以对控制获取资源等各种事情有用。

义大便,你最好的朋友

Itertools 模块包含操作可替换文件的特殊功能 。 是否想要重复生成器? 连锁二生成器? 组值与单线串连接的嵌入列表中?Map / Zip不创建其它列表吗 ?

然后,就刚刚import itertools.

举个例子,让我们看看四匹马赛的到货订单

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

了解迭代的内部机制

迭迭代是一个过程,意味着可迭代(实施__iter__()和迭代器(执行__next__()循环是您可以从中获取迭代器的任何对象。迭代器是允许您在迭代器上迭代的对象。

这篇文章中更多关于如何如何for环环工作.

其他回答

这样想吧:

a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a. a.next()方法。因此,一个产出式的函数最终会变成这样:

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

更深入了解幕后发生的事for循环可以重写到此 :

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我应当指出,这一点a 为说明目的过于简化。 )

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

缩略yieldPython 语句中的 Python 语句返回一个发电机。 Python 中的发电机是一个函数返回续续(具体地说,是一种共同的例行公事,但延续是了解情况的一般机制)。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般性的形式出现的延续可以采取两种方式实施。call/cc方式,程序堆放的堆放实际上被保存, 当继续被引用时, 堆放的堆放就会被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。


现在让我们来谈谈Python的发电机。发电机是一个特定的子类型 继续。而一般而言,继续保留能够拯救a计算计算(即程序调用堆叠)发电机只能保存电离层的迭代状态。振动器虽然这一定义对发电机的某些使用情况略有误导性,例如:

def f():
  while True:
    yield 4

这显然是一个合理的可循环性, 其行为是明确定义的, 每当发电机转动时, 它就会返回 4 个( 并且永远这样做 ) 。 但是,在思考迭代器时, 可能不会想到这种典型的可循环性( 即, , ) 。for x in collection: do_something(x)这个例子说明了发电机的功率:如果有什么是迭代器,发电机可以挽救其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态。 这意味着, 继续的威力比发电机大得多, 并且发电机也容易得多, 也容易得多。 语言设计师更容易执行, 程序设计员更容易使用( 如果您有时间燃烧, 试着阅读和理解)此页面的续续和调用/ cc).

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

时 时 时yield被调用,它告诉函数返回一个延续。当再次调用函数时,它从它离开的开始。因此,在假假假代码(即不是伪代码,但不包括代码)中,生成器的next方法基本上如下:

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

位于yield关键字实际上是实际生成功能的合成糖, 基本上类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假代号,而Python发电机的实际安装则更为复杂。 但是,作为了解正在发生的情况的一种练习,试图在不使用发电机物体的情况下,使用持续的传承风格来实施发电机物体。yield关键字。

简单使用实例 :

>>> def foo():
    yield 100
    yield 20
    yield 3

    
>>> for i in foo(): print(i)

100
20
3
>>> 

如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。

在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。

在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。

也可以将数据发送回生成器!

事实上,正如这里许多答案所解释的,使用yield创建 a 创建generator.

您可以使用yield关键字到将数据发送回“ 实时” 生成器.

示例:

假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。

def translator():
    # load all the words in English language and the translation to 'other lang'
    my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}

    while True:
        word = (yield)
        yield my_words_dict.get(word, 'Unknown word...')

运行中 :

my_words_translator = translator()

next(my_words_translator)
print(my_words_translator.send('dog'))

next(my_words_translator)
print(my_words_translator.send('cat'))

将打印 :

dog in other language
Unknown word...

概括如下:

使用send生成器内的方法将数据发送回生成器。如果允许, a(yield)使用。

从方案拟订的角度来看,迭代器是按下列方式执行的:Tunks 缩图.

实施迭代机、发电机和用于同时执行的线性集合,等等,作为杜丘,一种用途发送到关闭对象的信件它有一个调度员, 和给“ 消息” 的发件人解答.

"下一个"是发送到结束处的电文,该电文由“创建者”创建。亚列"打电话。

执行此计算有很多方法。 我使用突变, 但可以通过返回当前值和下一个生成者( 生成者) 返回当前值和下一个生成者( 生成者) 来进行这种不突变的计算( 生成者)优惠透明Racket使用一些中间语言对初始方案进行一系列转换,其中之一是进行这种改写,使产量经营者与较简单的经营者以某种语言进行转换。

这是如何重写产量的演示, 它使用 R6RS 的结构, 但语义与 Python 的相同 。 这是相同的计算模式, 只需要修改语法, 才能使用 Python 的 产量重写 。

Welcome to Racket v6.5.0.3.

-> (define gen
     (lambda (l)
       (define yield
         (lambda ()
           (if (null? l)
               'END
               (let ((v (car l)))
                 (set! l (cdr l))
                 v))))
       (lambda(m)
         (case m
           ('yield (yield))
           ('init  (lambda (data)
                     (set! l data)
                     'OK))))))
-> (define stream (gen '(1 2 3)))
-> (stream 'yield)
1
-> (stream 'yield)
2
-> (stream 'yield)
3
-> (stream 'yield)
'END
-> ((stream 'init) '(a b))
'OK
-> (stream 'yield)
'a
-> (stream 'yield)
'b
-> (stream 'yield)
'END
-> (stream 'yield)
'END
->