何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

简言之,yield语句将函数转换为生产特殊物体的工厂generator环绕您原始函数的正文。当generator被迭代,它执行您函数,直到到达下一个yield然后暂停执行执行,然后对传递到yield。在每次迭代上重复这个过程,直到执行路径退出函数。例如,

def simple_generator():
    yield 'one'
    yield 'two'
    yield 'three'

for i in simple_generator():
    print i

简单产出

one
two
three

电源来自使用循环计算序列的生成器, 生成器执行循环每次停止到“ ield ” 的下一个计算结果, 这样它就可以计算飞行上的列表, 好处是存储到特别大的计算中的内存

说你想创造你自己的range函数产生可循环的数字范围,可以这样做,

def myRangeNaive(i):
    n = 0
    range = []
    while n < i:
        range.append(n)
        n = n + 1
    return range

并像这样使用它;

for i in myRangeNaive(10):
    print i

但这效率低,因为

  • 您创建了一个只使用一次的数组( 此废物内存)
  • 这个代码实际上绕过那个阵列两次! ! : () ! () ! ()

幸好吉多和他的团队 慷慨地开发了发电机 这样我们就可以这么做了

def myRangeSmart(i):
    n = 0
    while n < i:
       yield n
       n = n + 1
    return

for i in myRangeSmart(10):
    print i

在每次迭代时,发电机上有一个功用,next()执行函数,直到它到达“当”语句,停止该语句和“当”语句,停止该语句和“当”值,或者到达函数的结尾。在此情况下,第一次调用时,next()执行到输出语句并产生“ n ” , 下次调用时, 它会执行递增语句, 跳回“ 同时” , 评估它, 如果真的, 它会停止并产生“ n ” , 它会继续这样下去, 直到条件返回错误, 发电机跳到函数结束 。

其他回答

简单简单简单yield计算 fibonacci 序列的基础方法,解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为:yield发送到 Python 的信号, 您想要创建发电机发电机,即,一个根据需求产生价值的物体。

那么,您如何生成这些值? 可以通过使用内置函数直接实现next,或间接地,通过将其喂养到消耗价值的建筑上。

使用内置next()函数,直接引用.next/__next__迫使发电机产生一个价值:

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接提供fib至 afor环环, alist初始初始化器, atuple初始化器, 或其他任何期望生成/ 产生值的对象, 您会“ 组装” 生成器, 直到它无法生成更多值( 并返回 ) :

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

同样,tuple初始化器 :

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你们第一次祈祷的时候,fib称其为:

f = fib()

Python 编译函数,遇到yieldkeyword and simply return a generate objects back at you. 似乎没有什么帮助。

当您要求它生成第一个值时,它直接或间接地执行它发现的所有语句,直到它遇到一个yield,然后,它产生回 价值,你提供yield并暂停。 举例来证明这一点, 让我们使用一些print电话(取代电话)print "text"如果Python 2 上写着:

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待命令来生成值。 使用next并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。引用的结果是返回的内容yield调来next现在再次:

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

发电机记得它被停停在yield value从那里打印下一条消息并搜索yield暂停该语句时(由于while(循环))

缩略yieldKeyword 简单收集返回结果。yield类似return +=

yield允许您更聪明地写字for- 通过将循环部分计入一个便于再利用的单独方法。

假设你需要环绕电子表格的所有非空白行,对每行都做一些事情。

for i, row in df.iterrows(): #from the panda package for reading excel 
  if row = blank: # pseudo code, check if row is non-blank...
    continue
  if past_last_row: # pseudo code, check for end of input data
    break
  #### above is boring stuff, below is what we actually want to do with the data ###
  f(row)

如果你需要打电话g(row)在一个类似的循环中,你可能会发现自己重复for语句加有效行的检查,这是枯燥、复杂和易出错的。我们不想重复(DRY 原则) 。

您想要将检查每个记录的代码与实际处理行的代码区分开来, 比如f(row)g(row) .

您可以做一个函数, 将 f() 作为输入参数, 但使用要简单得多yield在一个方法中做所有关于检查有效行以准备拨打 f () 的无聊内容:

def valid_rows():
  for i, row in df.iterrows(): # iterate over each row of spreadsheet
    if row == blank: # pseudo code, check if row is non-blank...
      continue
    if past_last_row: # pseudo code, check for end of input data
      break
    yield i, row

请注意,方法的每次调用将返回下一行,但如果所有行都读取,且for结束, 方法将return通常。下一次调用将开始新的for循环。

现在您可以在数据上写入迭代, 而不必重复对有效行进行无趣的检查( 现在根据自己的方法来计算) , 例如 :

for i, row in valid_rows():
  f(row)

for i, row in valid_rows():
  g(row)

nr_valid_rows = len(list(valid_rows()))

仅此而已。 请注意, 我还没有使用诸如 迭代器、 生成器、 协议、 共同常规等术语 。 我认为这个简单的例子 适用于我们日常的许多编码 。

理解什么yield确实,你必须明白什么是发电机发电机。在您能够理解发电机之前,您必须理解易可动的.

易变性

创建列表时,您可以逐项阅读其项目。逐项阅读其项目被称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

mylist易 易 易 性。当您使用对列表的理解时,会创建列表,因此,可以循环:

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4

能够使用的一切 " 。for... in..."是可循环的;lists, strings文档...

这些可替换的功能是实用的,因为您可以随心所欲地阅读,但您将所有值都存储在记忆中,当您拥有很多值时,这并不总是你想要的。

发电机发电机

发电机是迭代器,是一种可循环的您只能循环一次。发电机不会存储所有值的内存,它们会在飞上生成值:

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

除了你用过的一样()代替[]但是,你,你无法不能表现 表现表现for i in mygenerator第二次,因为发电机只能使用一次:它们计算0,然后忘记它,计算1,最后计算4,一个一个。

产量d

yield是一个关键字,它被像return,但该函数将返回一个发电机。

>>> def create_generator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = create_generator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

这是一个毫无用处的例子, 但当你知道你的功能会返回 一大堆的值时, 它就方便了, 你只需要读一次。

师傅yield你必须明白当您调用函数时,函数体中的代码不会运行。函数只返回生成对象, 这有点棘手 。

然后,你的代码会继续 从它每次离开的代码开始for使用发电机。

现在,硬的部分:

第一次for调用从您函数创建的生成器对象,它将运行您函数中的代码,从开始一直运行到点击yield,然后它返回循环的第一个值。然后,每次随后的呼叫将运行您在函数中写入的循环的再次迭代,然后返回下一个值。这将一直持续到发电机被视为空,当函数运行时没有打中yield。这可能是因为循环已经结束,或者因为你不再满足"if/else".


您的代码解释

发电机:

# Here you create the method of the node object that will return the generator
def _get_child_candidates(self, distance, min_dist, max_dist):

    # Here is the code that will be called each time you use the generator object:

    # If there is still a child of the node object on its left
    # AND if the distance is ok, return the next child
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild

    # If there is still a child of the node object on its right
    # AND if the distance is ok, return the next child
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild

    # If the function arrives here, the generator will be considered empty
    # there are no more than two values: the left and the right children

调用者 :

# Create an empty list and a list with the current object reference
result, candidates = list(), [self]

# Loop on candidates (they contain only one element at the beginning)
while candidates:

    # Get the last candidate and remove it from the list
    node = candidates.pop()

    # Get the distance between obj and the candidate
    distance = node._get_dist(obj)

    # If the distance is ok, then you can fill in the result
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)

    # Add the children of the candidate to the candidate's list
    # so the loop will keep running until it has looked
    # at all the children of the children of the children, etc. of the candidate
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result

本代码包含几个智能部分 :

  • 循环在列表中反复出现, 但列表会扩展, 而循环正在迭代中 。 这是一个简洁的方法 来查看所有这些嵌套的数据, 即使它有点危险, 因为您可以以无限循环结束 。 在这种情况下,candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))耗尽发电机的所有值,但while保持创建新生成的生成对象, 从而产生与前一个生成对象不同的值, 因为它不应用在同一节点上 。

  • 缩略extend()方法是一种列表对象方法,该方法预计可循环并增加其值到列表中。

通常,我们向它传递一份清单:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但在你的代码中,它有一个发电机, 这是很好的,因为:

  1. 您不需要两次阅读数值 。
  2. 你可能有很多孩子 你不想把他们都保存在记忆中

之所以有效,是因为 Python 并不在意一种方法的论据是否是一个列表。 Python 期望它能用字符串、列表、图普勒和生成器来操作。 这叫做鸭字打字, 也是Python之所以如此酷的原因之一。 但是这是另一个故事, 另一个问题...

您可以在这里停下来,或者读一下,看一个生成器的先进使用:

控制发电机耗竭

>>> class Bank(): # Let's create a bank, building ATMs
...    crisis = False
...    def create_atm(self):
...        while not self.crisis:
...            yield "$100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
...    print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

注:Python 3, 用于 Python 3, 使用print(corner_street_atm.__next__())print(next(corner_street_atm))

它可以对控制获取资源等各种事情有用。

义大便,你最好的朋友

Itertools 模块包含操作可替换文件的特殊功能 。 是否想要重复生成器? 连锁二生成器? 组值与单线串连接的嵌入列表中?Map / Zip不创建其它列表吗 ?

然后,就刚刚import itertools.

举个例子,让我们看看四匹马赛的到货订单

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

了解迭代的内部机制

迭迭代是一个过程,意味着可迭代(实施__iter__()和迭代器(执行__next__()循环是您可以从中获取迭代器的任何对象。迭代器是允许您在迭代器上迭代的对象。

这篇文章中更多关于如何如何for环环工作.

又一个TRL;DR

列表中的迭代器: next()返回列表的下一个元素

热机发电机: next()将计算苍蝇上的下一个元素( 执行代码)

您可以看到生成/生成器作为手动运行控制流量从外部( 如继续循环一步骤) 调用next无论流量如何复杂。

Note发电机是不无一个普通函数。它会像本地变量( stack) 一样记得以前的状态( stack) 。请参看其他答案或文章以详细解释。生成器只能是曾经变热过一次. 你可以没有yield,但它不会是那么好, 所以它可以被认为是“非常好”的语言糖。