何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

简言之,yield语句将函数转换为生产特殊物体的工厂generator环绕您原始函数的正文。当generator被迭代,它执行您函数,直到到达下一个yield然后暂停执行执行,然后对传递到yield。在每次迭代上重复这个过程,直到执行路径退出函数。例如,

def simple_generator():
    yield 'one'
    yield 'two'
    yield 'three'

for i in simple_generator():
    print i

简单产出

one
two
three

电源来自使用循环计算序列的生成器, 生成器执行循环每次停止到“ ield ” 的下一个计算结果, 这样它就可以计算飞行上的列表, 好处是存储到特别大的计算中的内存

说你想创造你自己的range函数产生可循环的数字范围,可以这样做,

def myRangeNaive(i):
    n = 0
    range = []
    while n < i:
        range.append(n)
        n = n + 1
    return range

并像这样使用它;

for i in myRangeNaive(10):
    print i

但这效率低,因为

  • 您创建了一个只使用一次的数组( 此废物内存)
  • 这个代码实际上绕过那个阵列两次! ! : () ! () ! ()

幸好吉多和他的团队 慷慨地开发了发电机 这样我们就可以这么做了

def myRangeSmart(i):
    n = 0
    while n < i:
       yield n
       n = n + 1
    return

for i in myRangeSmart(10):
    print i

在每次迭代时,发电机上有一个功用,next()执行函数,直到它到达“当”语句,停止该语句和“当”语句,停止该语句和“当”值,或者到达函数的结尾。在此情况下,第一次调用时,next()执行到输出语句并产生“ n ” , 下次调用时, 它会执行递增语句, 跳回“ 同时” , 评估它, 如果真的, 它会停止并产生“ n ” , 它会继续这样下去, 直到条件返回错误, 发电机跳到函数结束 。

其他回答

yield简直就像return区别在于,下次你打电话给发电机时,从最后一次呼叫开始执行。yield与返回不同的语句,当生成时, 堆叠框架不会被清理, 但是控件会被转回调用方, 所以下次调用函数时, 它的状态将会恢复 。

对于您的代码,函数get_child_candidates动作就像一个循环器,这样当您扩展列表时,它会一次向新列表添加一个元素。

list.extend在你公布的代码样本中, 只需将图普还给列表, 并附加到列表中, 就会更加清晰 。

通常情况下, 它会用来创建一个不起作用的代名词。 将“ ield” 当作您函数的附加件, 以及您作为数组的函数。 如果符合某些标准, 您可以在函数中添加此值, 使之成为代名词 。

arr=[]
if 2>0:
   arr.append(2)

def func():
   if 2>0:
      yield 2

两者的输出结果相同。

使用产量的主要优势是创建迭代器。 迭代器在即时计算时不会计算每个项目的价值。 它们只在您要求时才计算。 这被称为懒惰评价 。

这是关于什么的心理形象yield确实如此。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

yield函数,当其代码开始运行时(即函数被调用后,返回一个生成对象,该生成对象next()然后引用方法),它同样将其本地变量放在堆叠上,并计算一段时间。但是当它击中yield语句,在清理其部分堆叠并返回之前,它先对本地变量进行速记,然后将其存储在生成器对象中。它还写下它目前在其代码中的位置(即特定yield声明))

所以这是一种冷冻功能 发电机挂在了上面

何时next()函数随后被调用, 它从堆叠上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 忽略了它刚刚在冷藏中度过了永恒时间的事实 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们调用第二个函数时,它的行为与第一个功能非常不同。yield声明可能无法取得, 但如果它存在任何地方, 它会改变我们所处理的事物的性质。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

电 电 电yielderFunction()(也许用它来命名这种东西是个好主意)yielder可读性前缀。 )

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

缩略gi_codegi_frame字段中存储冻结状态的字段。dir(..),我们可以确认 我们的心理模式 上面是可信的。

放弃是一个对象

A A Areturn在函数中返回单一值。

如果您愿意,如果需要函数返回一大批值,使用yield.

更重要的是yield是 a 是障碍屏障.

就像CUDA语言中的屏障, 它不会转移控制 直到它完成。

也就是说,它会运行您函数的代码 从开始直到启动yield。然后,它将返回循环的第一个值。

然后,其他每通电话都会运行您在函数中写下的循环, 返回下一个值, 直到没有任何值可以返回 。

以下是一些Python的例子, 说明如何实际安装发电机, 仿佛Python没有提供同声糖:

作为Python发电机:

from itertools import islice

def fib_gen():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

assert [1, 1, 2, 3, 5] == list(islice(fib_gen(), 5))

使用地法关闭代替发电机

def ftake(fnext, last):
    return [fnext() for _ in xrange(last)]

def fib_gen2():
    #funky scope due to python2.x workaround
    #for python 3.x use nonlocal
    def _():
        _.a, _.b = _.b, _.a + _.b
        return _.a
    _.a, _.b = 0, 1
    return _

assert [1,1,2,3,5] == ftake(fib_gen2(), 5)

使用关闭物体代替发电机(因为封闭和对象等等同)

class fib_gen3:
    def __init__(self):
        self.a, self.b = 1, 1

    def __call__(self):
        r = self.a
        self.a, self.b = self.b, self.a + self.b
        return r

assert [1,1,2,3,5] == ftake(fib_gen3(), 5)