Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

简单解答

当函数包含至少一个输出语句时,函数自动成为生成函数。当您调用生成函数时, python 在生成函数中执行代码,直到生成语句发生。 当您调用生成函数时, python 继续从冻结位置执行生成函数中的代码,直到生成语句发生反复发生。 生成函数执行代码,直到生成函数在没有生成语句的情况下运行结束。

基准基准基准基准基准基准基准

创建列表并返回它 :

def my_range(n):
    my_list = []
    i = 0
    while i < n:
        my_list.append(i)
        i += 1
    return my_list

@profile
def function():
    my_sum = 0
    my_values = my_range(1000000)
    for my_value in my_values:
        my_sum += my_value

function()

结果有:

Total time: 1.07901 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     9                                           @profile
    10                                           def function():
    11         1          1.1      1.1      0.0      my_sum = 0
    12         1     494875.0 494875.0     45.9      my_values = my_range(1000000)
    13   1000001     262842.1      0.3     24.4      for my_value in my_values:
    14   1000000     321289.8      0.3     29.8          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     9   40.168 MiB   40.168 MiB           1   @profile
    10                                         def function():
    11   40.168 MiB    0.000 MiB           1       my_sum = 0
    12   78.914 MiB   38.746 MiB           1       my_values = my_range(1000000)
    13   78.941 MiB    0.012 MiB     1000001       for my_value in my_values:
    14   78.941 MiB    0.016 MiB     1000000           my_sum += my_value

在飞行上生成值 :

def my_range(n):
    i = 0
    while i < n:
        yield i
        i += 1

@profile
def function():
    my_sum = 0
    
    for my_value in my_range(1000000):
        my_sum += my_value

function()

结果有:

Total time: 1.24841 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           @profile
     8                                           def function():
     9         1          1.1      1.1      0.0      my_sum = 0
    10
    11   1000001     895617.3      0.9     71.7      for my_value in my_range(1000000):
    12   1000000     352793.7      0.4     28.3          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     7   40.168 MiB   40.168 MiB           1   @profile
     8                                         def function():
     9   40.168 MiB    0.000 MiB           1       my_sum = 0
    10
    11   40.203 MiB    0.016 MiB     1000001       for my_value in my_range(1000000):
    12   40.203 MiB    0.020 MiB     1000000           my_sum += my_value

摘要摘要摘要

生成器函数需要稍多一点时间来执行, 而不是返回列表但少用内存的函数 。

其他回答

产出关键字只收集返回结果。将产出想象成返回 {{}}} 。

从方案拟订的角度来看,迭代器是作为散装件执行的。

为实施同时执行的迭代器、发电机和线形集合等,人们使用发往有调度员的关闭对象的电文,用发件人对“信息”的回答。

"下一步"是给一个封口发送的信息 由"标准"电话创建

有多种方法可以实施此计算。 我使用了突变, 但可以通过返回当前值和下一个生成者( 使其具有优先透明度 ) , 进行这种不发生突变的计算。 鼠标使用一些中间语言对初始程序进行一系列转换, 其中之一是将产出操作者转换为使用更简单的操作员的某种语言。

这是如何重写产量的演示, 它使用 R6RS 的结构, 但语义与 Python 的相同 。 这是相同的计算模式, 只需要修改语法, 才能使用 Python 的 产量重写 。

- (define gen (lambda (l) (define gen (lambda (l)) (define emple (lambda (lambda () ()) (if (null? l)) 'END (let ((v (car l))(set))(l (cdr))) (lambda (m) (cket m) (case m ('yield (yeld)(yeld))('ield))('iint (lamb) (lambda (lab) (lambda (data) (data) (l data))) ())) ) - (define 流 (gen 'ield (gen'(1,2 3 ) )) - (流 (流 ield) ) ) - (Live END - (Slead) (流 (流 ) (流 ) (流 (流 流 (流 流 流 流 流 流 ) 'ield) 'end - >

要了解什么是产量,你必须了解什么是发电机。在你能够理解发电机之前,你必须了解易燃的发电机。

易变性

创建列表时,您可以逐项阅读其项目。逐项阅读其项目被称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

My list 是可替换的。 当您使用列表理解时, 您会创建一个列表, 因而是一个可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4

你可以使用的一切"... 在..."是一个可循环的; 列表,字符串,文件...

这些可替换的功能是实用的,因为您可以随心所欲地阅读,但您将所有值都存储在记忆中,当您拥有很多值时,这并不总是你想要的。

发电机发电机

发电机是迭代器, 一种可迭代的循环, 您只能循环一次 。 发电机不会存储记忆中的所有值, 它们会在苍蝇上生成值 :

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

除了使用()而不是使用()之外,它是一样的。但是,由于发电机只能使用一次,所以不能在我的生成器中为我第二次执行,因为发电机只能使用一次:它们计算0,然后忘记它,然后计算1,然后结束计算4,一个一个一个地计算。

产量d

函数将返回一个生成器。

>>> def create_generator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = create_generator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

这是一个毫无用处的例子, 但当你知道你的功能会返回 一大堆的值时, 它就方便了, 你只需要读一次。

要掌握输出能力, 您必须明白当您调用函数时, 您在函数体中写入的代码没有运行。 函数只返回生成对象, 这有点棘手 。

然后,你的代码会继续 从它离开的每一次 使用发电机。

现在,硬的部分:

第一次调用您函数所创建的生成器对象时, 它会运行您函数的代码, 从开始到它产生, 然后返回循环的第一个值。 然后, 以后每次调用都会运行您在函数中写入的循环的再次迭代, 然后返回下一个值。 这将一直持续到生成器被认为是空的, 当函数运行时不会打出收益。 这可能是因为循环结束, 或者因为您不再满足“ if/ else ” 。


您的代码解释

发电机:

# Here you create the method of the node object that will return the generator
def _get_child_candidates(self, distance, min_dist, max_dist):

    # Here is the code that will be called each time you use the generator object:

    # If there is still a child of the node object on its left
    # AND if the distance is ok, return the next child
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild

    # If there is still a child of the node object on its right
    # AND if the distance is ok, return the next child
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild

    # If the function arrives here, the generator will be considered empty
    # there are no more than two values: the left and the right children

调用者 :

# Create an empty list and a list with the current object reference
result, candidates = list(), [self]

# Loop on candidates (they contain only one element at the beginning)
while candidates:

    # Get the last candidate and remove it from the list
    node = candidates.pop()

    # Get the distance between obj and the candidate
    distance = node._get_dist(obj)

    # If the distance is ok, then you can fill in the result
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)

    # Add the children of the candidate to the candidate's list
    # so the loop will keep running until it has looked
    # at all the children of the children of the children, etc. of the candidate
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result

本代码包含几个智能部分 :

在列表中循环迭代, 但列表会随着循环迭代而扩展。 这是一个简单的方式来查看所有这些嵌套的数据, 即使它是一个有点危险的, 因为您可以以无限环结束。 在此情况下, 候选人 。 extendend( rode._ get_ child_ camedates( root, min_ dist, max_ distist)) 将耗尽所有生成器的值, 但同时继续创建新生成的生成对象, 这些对象将产生与先前的相异的值, 因为它不会被应用到同一个节点上 。 扩展 () 方法是一种列表对象方法, 期待一个可重复的列表对象方法, 并将其添加到列表中 。

通常,我们向它传递一份清单:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但在你的代码中,它有一个发电机, 这是很好的,因为:

你不需要两次阅读这些值。 你可能有很多孩子, 你不想把他们都保存在记忆中。

之所以有效,是因为 Python 并不在意一种方法的论据是否是一个列表。 Python 期望它能用字符串、列表、图普勒和生成器来操作。 这叫做鸭字打字, 也是Python之所以如此酷的原因之一。 但是这是另一个故事, 另一个问题...

您可以在这里停下来,或者读一下,看一个生成器的先进使用:

控制发电机耗竭

>>> class Bank(): # Let's create a bank, building ATMs
...    crisis = False
...    def create_atm(self):
...        while not self.crisis:
...            yield "$100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
...    print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

注: Python 3, 使用打印( corner_street_atm._next___ ()) 或打印( ext( corner_ street_ atm) )

它可以对控制获取资源等各种事情有用。

义大便,你最好的朋友

Itertool 模块包含操作可替换文件的特殊功能 。 是否想要复制一个生成器? 连锁二生成器? 组值在单行的嵌套列表中? 地图/ Zip 不创建另一个列表 ?

然后就进口它的工具。

举个例子,让我们看看四匹马赛的到货订单

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

了解迭代的内部机制

迭代是一个过程, 意味着可迭代( 实施 _ etre_ () 方法) 和迭代( 实施 ext_ () 方法) 。 迭代是您可以从中获取迭代器的任何对象。 迭代器是允许您循环到可迭代的物体 。

本文中有更多关于环环如何运作的论述。

TL; DR TR; TL; TDR

代替此:

def square_list(n):
    the_list = []                         # Replace
    for x in range(n):
        y = x * x
        the_list.append(y)                # these
    return the_list                       # lines

这样做:

def square_yield(n):
    for x in range(n):
        y = x * x
        yield y                           # with this one.

每当你发现自己从头开始编出一个清单时, 每一块都取而代之。

这是我第一次"啊哈"节奏节奏


收成是一种含糖的方式 说

构建一系列材料

相同行为 :

>>> for square in square_list(4):
...     print(square)
...
0
1
4
9
>>> for square in square_yield(4):
...     print(square)
...
0
1
4
9

不同的行为 :

产量是单行道,只能绕过一次。当一个函数有收益时,我们称它为发电机功能。循环者就是它的回报。这些术语是明亮的。我们失去了一个容器的方便,但获得一系列按需要计算并任意延长的能量。

是懒惰的, 它会推卸计算。 函数中含有收益的函数在调用时不会实际执行。 它返回一个循环器对象, 记得它留下的位置。 每次您在调用循环器时( 这发生在换环) 执行步数向下一个产数前进。 返回会提高停止输出并结束序列( 这是换圈的自然结束 ) 。

产量是多功能的。数据不必全部储存在一起, 它可以一次提供一次。 它可以是无限的 。

>>> def squares_all_of_them():
...     x = 0
...     while True:
...         yield x * x
...         x += 1
...
>>> squares = squares_all_of_them()
>>> for _ in range(4):
...     print(next(squares))
...
0
1
4
9

如果您需要多个通行证,且系列不会太长,请在电话列表上填写:

>>> list(square_yield(4))
[0, 1, 4, 9]

英明地选择“产生”一词,因为这两个含义都适用:

产量——生产或供应(如农业)

...在系列中提供下一个数据

放弃或放弃(与政治权力一样)

...在传动器推进之前,将CPU执行。

以下是基于收益率的简单方法, 用来计算Fibonacci系列, 解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为向 Python 发出的产出信号 表明您想要创建一个生成器, 即一个根据需求产生价值的物体。

那么,你如何生成这些值?这要么直接通过下一个使用内置函数来实现,要么间接地通过将内置函数输入一个消耗值的构造来实现。

使用下个() 内置函数, 您可以直接引用. extext/ __ extext_ , 迫使生成器产生值 :

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接地,如果您为循环提供纤维、列表初始化器、图普特初始化器或其他任何期望产生/产生值的对象,您将“组装”生成器,直到它不再产生(并返回):

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

类似地,图普特首发器:

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你喊叫它的时候,

f = fib()

Python 编译函数, 遇到产出关键字, 只需返回生成对象。 似乎没有什么帮助 。

当您要求它生成第一个值时, 它会直接或间接地执行它发现的所有语句, 直到它遇到一个产量, 然后它会返回您提供的产量和暂停值。 对于一个更能证明这一点的例子, 让我们使用一些打印电话( 如果在 Python 2 上用打印“ text ” 代替 打印“ text ” ):

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待一个命令来生成一个值。 使用下一个对象并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。 引用的结果是从产出中返回的内容。 现在再次调用 :

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

生成器记得它被按产出值暂停, 然后从那里恢复。 下一则消息被打印, 并搜索收益声明以在它上再次暂停( 原因是同时循环 ) 。