我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?


当前回答

下面是一个解决方案,将工作与列表或dict类型参数没有抱怨:

def memoize(fn):
    """returns a memoized version of any function that can be called
    with the same list of arguments.
    Usage: foo = memoize(foo)"""

    def handle_item(x):
        if isinstance(x, dict):
            return make_tuple(sorted(x.items()))
        elif hasattr(x, '__iter__'):
            return make_tuple(x)
        else:
            return x

    def make_tuple(L):
        return tuple(handle_item(x) for x in L)

    def foo(*args, **kwargs):
        items_cache = make_tuple(sorted(kwargs.items()))
        args_cache = make_tuple(args)
        if (args_cache, items_cache) not in foo.past_calls:
            foo.past_calls[(args_cache, items_cache)] = fn(*args,**kwargs)
        return foo.past_calls[(args_cache, items_cache)]
    foo.past_calls = {}
    foo.__name__ = 'memoized_' + fn.__name__
    return foo

请注意,通过在handle_item中实现您自己的哈希函数,这种方法可以自然地扩展到任何对象。例如,为了使这种方法适用于一个接受set作为输入参数的函数,你可以在handle_item中添加:

if is_instance(x, set):
    return make_tuple(sorted(list(x)))

其他回答

记忆实际上是指根据方法输入记住(“记忆”→“备忘录”→被记住)方法调用的结果,然后返回记住的结果,而不是重新计算结果。您可以把它看作是方法结果的缓存。更多详细信息,请参阅第387页的算法介绍(3e), Cormen等人的定义。

在Python中使用内存计算阶乘的简单示例如下:

factorial_memo = {}
def factorial(k):
    if k < 2: return 1
    if k not in factorial_memo:
        factorial_memo[k] = k * factorial(k-1)
    return factorial_memo[k]

你可以做得更复杂一些,把记忆过程封装到一个类中:

class Memoize:
    def __init__(self, f):
        self.f = f
        self.memo = {}
    def __call__(self, *args):
        if not args in self.memo:
            self.memo[args] = self.f(*args)
        #Warning: You may wish to do a deepcopy here if returning objects
        return self.memo[args]

然后:

def factorial(k):
    if k < 2: return 1
    return k * factorial(k - 1)

factorial = Memoize(factorial)

Python 2.4中添加了一个被称为“装饰器”的特性,它允许你现在简单地编写以下代码来完成同样的事情:

@Memoize
def factorial(k):
    if k < 2: return 1
    return k * factorial(k - 1)

Python装饰器库有一个类似的装饰器,称为memoized,它比这里显示的Memoize类稍微健壮一些。

如果要考虑速度:

@functools。cache和@functools.lru_cache(maxsize=None)同样快,在我的系统上循环一百万次需要0.122秒(最好运行15次) 全局缓存变量要慢得多,在我的系统上循环一百万次需要0.180秒(最好运行15次) 一个自我。缓存类变量仍然有点慢,在我的系统上循环一百万次需要0.214秒(最好运行15次)

后两者的实现方式与目前投票最多的答案中描述的类似。

这没有防止内存耗尽,也就是说,我没有在类或全局方法中添加代码来限制缓存的大小,这真的是最基本的实现。如果需要的话,lru_cache方法可以免费提供。

对我来说,一个悬而未决的问题是如何对具有functools装饰器的东西进行单元测试。是否有可能以某种方式清空缓存?单元测试似乎使用class方法(在这里您可以为每个测试实例化一个新类)或全局变量方法(因为您可以使用您的rimportedmodule)是最干净的。Cachevariable ={}来清空它)。

其他答案很好地涵盖了它的本质。我不是在重复。只是一些可能对你有用的观点。

通常,memoisation是一种可以应用在任何函数上的操作,该函数计算一些东西(昂贵的)并返回一个值。因此,它通常被实现为一个装饰器。实现很简单,大概是这样的

memoised_function = memoise(actual_function)

或者表示为装饰者

@memoise
def actual_function(arg1, arg2):
   #body

只是想对已经提供的答案进行补充,Python装饰器库有一些简单但有用的实现,也可以记住“不可哈希类型”,不像functools.lru_cache。

functools。缓存装饰:

Python 3.9发布了一个新函数functools.cache。它在内存中缓存带有一组特定参数的函数调用的结果,这就是内存化。它很容易使用:

import functools
import time

@functools.cache
def calculate_double(num):
    time.sleep(1) # sleep for 1 second to simulate a slow calculation
    return num * 2

第一次调用caculate_double(5)时,它将花费一秒钟并返回10。第二次使用相同的参数calculate_double(5)调用该函数时,它将立即返回10。

添加缓存装饰器可以确保如果函数最近为某个特定值被调用,它将不会重新计算该值,而是使用先前缓存的结果。在这种情况下,它可以极大地提高速度,同时代码不会因为缓存的细节而变得混乱。

(编辑:前面的示例使用递归计算了斐波那契数,但我修改了示例以防止混淆,因此出现了旧的注释。)

functools。lru_cache装饰:

如果您需要支持旧版本的Python,请使用functools。lru_cache适用于Python 3.2+。默认情况下,它只缓存最近使用的128个调用,但你可以将maxsize设置为None来指示缓存永远不会过期:

@functools.lru_cache(maxsize=None)
def calculate_double(num):
    # etc