我有两个具有相同(不连续)指标的级数s1和s2。我如何结合s1和s2是一个DataFrame的两列,并保持一个索引作为第三列?
当前回答
示例代码:
a = pd.Series([1,2,3,4], index=[7,2,8,9])
b = pd.Series([5,6,7,8], index=[7,2,8,9])
data = pd.DataFrame({'a': a,'b':b, 'idx_col':a.index})
Pandas允许您从字典中创建一个DataFrame,其值为Series,键为列名。当它找到一个Series作为值时,它使用Series索引作为DataFrame索引的一部分。这种数据对齐是Pandas的主要优势之一。因此,除非您有其他需要,否则新创建的DataFrame具有重复的值。在上面的例子中,data['idx_col']与data.index拥有相同的数据。
其他回答
我使用pandas将我的numpy数组或iseries转换为一个数据帧,然后添加和添加额外的列键作为“预测”。如果你需要将数据帧转换回列表,则使用values.tolist()
output=pd.DataFrame(X_test)
output['prediction']=y_pred
list=output.values.tolist()
熊猫将自动对齐这些传递的系列,并创建联合索引 它们在这里是一样的。Reset_index将索引移动到一列。
In [2]: s1 = Series(randn(5),index=[1,2,4,5,6])
In [4]: s2 = Series(randn(5),index=[1,2,4,5,6])
In [8]: DataFrame(dict(s1 = s1, s2 = s2)).reset_index()
Out[8]:
index s1 s2
0 1 -0.176143 0.128635
1 2 -1.286470 0.908497
2 4 -0.995881 0.528050
3 5 0.402241 0.458870
4 6 0.380457 0.072251
我不确定我完全理解你的问题,但这是你想做的吗?
pd.DataFrame(data=dict(s1=s1, s2=s2), index=s1.index)
(指数= s1。这里甚至不需要索引)
如果两者有相同的索引,为什么不直接使用.to_frame呢?
> = v0.23
a.to_frame().join(b)
< v0.23
a.to_frame().join(b.to_frame())
如果您试图连接长度相等但它们的索引不匹配的Series(这是一种常见的情况),那么连接它们将在它们不匹配的地方生成NAs。
x = pd.Series({'a':1,'b':2,})
y = pd.Series({'d':4,'e':5})
pd.concat([x,y],axis=1)
#Output (I've added column names for clarity)
Index x y
a 1.0 NaN
b 2.0 NaN
d NaN 4.0
e NaN 5.0
假设您不关心索引是否匹配,解决方案是在连接两个Series之前重新索引它们。如果drop=False,这是默认值,那么Pandas将把旧索引保存在新数据框架的一列中(为了简单起见,这里省略了索引)。
pd.concat([x.reset_index(drop=True),y.reset_index(drop=True)],axis=1)
#Output (column names added):
Index x y
0 1 4
1 2 5
推荐文章
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成
- 提取和保存视频帧
- 使用请求包时出现SSL InsecurePlatform错误
- 如何检索Pandas数据帧中的列数?
- except:和except的区别:
- 错误:“字典更新序列元素#0的长度为1;2是必需的”