我有两个具有相同(不连续)指标的级数s1和s2。我如何结合s1和s2是一个DataFrame的两列,并保持一个索引作为第三列?
当前回答
基于join()的解决方案的简化:
df = a.to_frame().join(b)
其他回答
我使用pandas将我的numpy数组或iseries转换为一个数据帧,然后添加和添加额外的列键作为“预测”。如果你需要将数据帧转换回列表,则使用values.tolist()
output=pd.DataFrame(X_test)
output['prediction']=y_pred
list=output.values.tolist()
请允许我回答这个问题。
将序列转换为数据帧的基本原理是理解这一点
1. 在概念层面上,数据帧中的每一列都是一个系列。
2. 并且,每个列名都是映射到一个序列的键名。
如果你记住了以上两个概念,你可以想到很多方法将序列转换为数据帧。 一个简单的解决方案是这样的:
在这里创建两个系列
import pandas as pd
series_1 = pd.Series(list(range(10)))
series_2 = pd.Series(list(range(20,30)))
创建一个空的数据帧,只需要列的名称
df = pd.DataFrame(columns = ['Column_name#1', 'Column_name#1'])
利用映射概念将序列值放入数据帧中
df['Column_name#1'] = series_1
df['Column_name#2'] = series_2
现在检查结果
df.head(5)
基于join()的解决方案的简化:
df = a.to_frame().join(b)
如果两者有相同的索引,为什么不直接使用.to_frame呢?
> = v0.23
a.to_frame().join(b)
< v0.23
a.to_frame().join(b.to_frame())
我认为concat是一个很好的方法。如果它们存在,它使用Series的name属性作为列(否则它只是简单地为它们编号):
In [1]: s1 = pd.Series([1, 2], index=['A', 'B'], name='s1')
In [2]: s2 = pd.Series([3, 4], index=['A', 'B'], name='s2')
In [3]: pd.concat([s1, s2], axis=1)
Out[3]:
s1 s2
A 1 3
B 2 4
In [4]: pd.concat([s1, s2], axis=1).reset_index()
Out[4]:
index s1 s2
0 A 1 3
1 B 2 4
注意:这扩展到2系列以上。
推荐文章
- 在python中插入一个列表到另一个列表的语法是什么?
- Python中的最大浮点数是多少?
- 将一个列表分成大约相等长度的N个部分
- Python __str__与__unicode__
- 在python中,del和delattr哪个更好?
- 如何动态加载Python类
- 有没有办法在python中做HTTP PUT
- “foo Is None”和“foo == None”之间有什么区别吗?
- 类没有对象成员
- Django模型“没有显式声明app_label”
- 熊猫能自动从CSV文件中读取日期吗?
- 在python中zip的逆函数是什么?
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 如何检索插入id后插入行在SQLite使用Python?
- 我如何在Django中添加一个CharField占位符?