我知道UIKit使用CGFloat,因为它是分辨率无关的坐标系。
但每次我想检查frame.origin.x是否为0时,我都觉得很恶心:
if (theView.frame.origin.x == 0) {
// do important operation
}
当与==,<=,>=,<,>比较时,CGFloat是否容易出现假阳性?
它是一个浮点数,它们有不精确的问题:例如0.0000000000041。
Objective-C在比较时是否会在内部处理这个或者是否会发生原点。读作0的X不与0比较为真?
我想给出一个和其他人不一样的答案。他们很好地回答了你的问题,但可能不是你需要知道的或你真正的问题是什么。
图形中的浮点数很好!但是几乎没有必要直接比较浮点数。你为什么要这么做?图形使用浮点数来定义间隔。比较浮动是否在浮动所定义的区间内总是定义良好的,只需要保持一致,而不需要精确或精确!只要可以分配一个像素(这也是一个间隔!),这就是所有的图形需求。
所以如果你想测试你的点是否在a [0..]宽度[范围,这很好。只要确保你对包含的定义是一致的。例如,总是定义内部是(x>=0 && x < width)。这同样适用于交叉测试或命中测试。
但是,如果您滥用图形坐标作为某种标志,例如查看窗口是否停靠,则不应该这样做。使用一个独立于图形表示层的布尔标志。
[“正确答案”掩盖了选择K。选择K就像选择VISIBLE_SHIFT一样特别,但选择K不那么明显,因为与VISIBLE_SHIFT不同,它不基于任何显示属性。因此选择你的毒药-选择K或选择VISIBLE_SHIFT。这个答案主张选择VISIBLE_SHIFT,然后演示了选择K的困难。
正是由于四舍五入的错误,您不应该在逻辑操作中使用“精确”值的比较。在视觉显示的特定情况下,位置是0.0还是0.0000000003可能无关紧要——肉眼是看不见差异的。所以你的逻辑应该是这样的:
#define VISIBLE_SHIFT 0.0001 // for example
if (fabs(theView.frame.origin.x) < VISIBLE_SHIFT) { /* ... */ }
然而,最终,“看不见的眼睛”将取决于你的显示属性。如果你能上界显示(你应该可以);然后选择VISIBLE_SHIFT作为上限的一个分数。
现在,“正确答案”取决于K,所以让我们来探索选择K。
K是一个常数,你选择使你的累积误差
计算的最后一个位置肯定是K个单位(和
如果你不确定误差范围的计算是正确的,取K a
比你的计算结果大几倍)
所以我们需要K,如果得到K比选择VISIBLE_SHIFT更难,更不直观,那么你就决定什么对你有效。为了找到K,我们要写一个测试程序,看一堆K的值,这样我们就能看到它的行为。如果“正确答案”可用,那么如何选择K应该是显而易见的。没有?
我们将使用,作为“正确答案”的细节:
if (fabs(x-y) < K * DBL_EPSILON * fabs(x+y) || fabs(x-y) < DBL_MIN)
我们试一下K的所有值:
#include <math.h>
#include <float.h>
#include <stdio.h>
void main (void)
{
double x = 1e-13;
double y = 0.0;
double K = 1e22;
int i = 0;
for (; i < 32; i++, K = K/10.0)
{
printf ("K:%40.16lf -> ", K);
if (fabs(x-y) < K * DBL_EPSILON * fabs(x+y) || fabs(x-y) < DBL_MIN)
printf ("YES\n");
else
printf ("NO\n");
}
}
ebg@ebg$ gcc -o test test.c
ebg@ebg$ ./test
K:10000000000000000000000.0000000000000000 -> YES
K: 1000000000000000000000.0000000000000000 -> YES
K: 100000000000000000000.0000000000000000 -> YES
K: 10000000000000000000.0000000000000000 -> YES
K: 1000000000000000000.0000000000000000 -> YES
K: 100000000000000000.0000000000000000 -> YES
K: 10000000000000000.0000000000000000 -> YES
K: 1000000000000000.0000000000000000 -> NO
K: 100000000000000.0000000000000000 -> NO
K: 10000000000000.0000000000000000 -> NO
K: 1000000000000.0000000000000000 -> NO
K: 100000000000.0000000000000000 -> NO
K: 10000000000.0000000000000000 -> NO
K: 1000000000.0000000000000000 -> NO
K: 100000000.0000000000000000 -> NO
K: 10000000.0000000000000000 -> NO
K: 1000000.0000000000000000 -> NO
K: 100000.0000000000000000 -> NO
K: 10000.0000000000000000 -> NO
K: 1000.0000000000000000 -> NO
K: 100.0000000000000000 -> NO
K: 10.0000000000000000 -> NO
K: 1.0000000000000000 -> NO
K: 0.1000000000000000 -> NO
K: 0.0100000000000000 -> NO
K: 0.0010000000000000 -> NO
K: 0.0001000000000000 -> NO
K: 0.0000100000000000 -> NO
K: 0.0000010000000000 -> NO
K: 0.0000001000000000 -> NO
K: 0.0000000100000000 -> NO
K: 0.0000000010000000 -> NO
啊,所以K应该是1e16或者更大如果我想让1e13等于0。
所以,我认为你有两个选择:
就像我建议的那样,用你的工程判断来做一个简单的计算。如果你做的是图形,“零”意味着“可见的变化”,那就检查你的视觉资产(图像等)并判断epsilon可以是什么。
不要尝试任何浮点计算,直到你阅读了非货物崇拜答案的参考资料(并在此过程中获得博士学位),然后使用你的非直觉判断选择K。
The last time I checked the C standard, there was no requirement for floating point operations on doubles (64 bits total, 53 bit mantissa) to be accurate to more than that precision. However, some hardware might do the operations in registers of greater precision, and the requirement was interpreted to mean no requirement to clear lower order bits (beyond the precision of the numbers being loaded into the registers). So you could get unexpected results of comparisons like this depending on what was left over in the registers from whoever slept there last.
也就是说,尽管我一看到它就努力删除它,但我工作的机构有大量使用gcc编译并运行在linux上的C代码,我们已经很长时间没有注意到这些意想不到的结果了。我不知道这是否是因为gcc为我们清除了低阶位,80位寄存器在现代计算机上不用于这些操作,标准已经改变了,还是什么。我想知道是否有人可以引用章节和诗句。
因为0完全可以表示为一个IEEE754浮点数(或者使用我曾经使用过的任何其他f-p数字实现),与0比较可能是安全的。然而,如果你的程序计算了一个值(比如theView.frame.origin.x),你有理由相信它应该是0,但你的计算不能保证它是0,你可能会被咬。
为了澄清一点,计算如下:
areal = 0.0
会(除非你的语言或系统坏了)创建一个值(areal==0.0)返回true,但另一个计算,如
areal = 1.386 - 2.1*(0.66)
可能不会。
如果你能保证你的计算产生的值是0(而不仅仅是它们产生的值应该是0),那么你可以继续将f-p值与0进行比较。如果你不能保证自己达到要求的程度,最好坚持通常的“宽容平等”方法。
在最坏的情况下,不小心比较f-p值可能是极其危险的:想想航空电子设备、武器制导、发电厂操作、车辆导航,几乎所有计算与现实世界相结合的应用。
对《愤怒的小鸟》来说,没有那么危险。
另一个可能需要记住的问题是,不同的实现做事情的方式不同。我非常熟悉的一个例子是索尼Playstation 2上的FP单元。与任何X86设备中的IEEE FP硬件相比,它们有显著的差异。引用的文章提到完全缺乏对inf和NaN的支持,而且情况变得更糟。
不太为人所知的是我后来所知道的“一位乘法”错误。对于float x的特定值:
y = x * 1.0;
assert(y == x);
断言将失败。在一般情况下,有时,但不总是,在Playstation 2上FP相乘的结果比等效的IEEE尾数少一位。
我的观点是,您不应该假设将FP代码从一个平台移植到另一个平台会产生相同的结果。任何给定的平台都是内部一致的,因为结果在该平台上不会改变,只是它们可能与另一个平台不一致。例如,X86上的CPython使用64位双精度来表示浮点数,而Cortex MO上的CircuitPython必须使用软件FP,并且只使用32位浮点数。不用说,这会引起差异。
我40多年前学到的一句话今天依然适用。“在计算机上做浮点运算就像移动一堆沙子。每次你做任何事,都会留下一点沙子,捡起一点泥土。”
Playstation是索尼公司的注册商标。