我一直是一个简单使用的人:

List<String> names = new ArrayList<>();

我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。

LinkedList何时应用于ArrayList,反之亦然?


当前回答

链接列表的一个重要特性(我在另一个答案中没有看到)是两个列表的串联。对于数组,这是O(n)(+某些重新分配的开销),对于链接列表,这只是O(1)或O(2);-)

重要提示:对于Java的LinkedList,这不是真的!请参阅Java中是否有一种快速的链表连接方法?

其他回答

数组列表本质上是一个具有添加项等方法的数组(您应该使用通用列表)。它是可以通过索引器(例如[0])访问的项的集合。它意味着从一个项目到下一个项目的进展。

链接列表指定从一个项目到下一个项目(项目A->项目b)的进度。您可以使用数组列表获得相同的效果,但链接列表绝对会说明前一个列表后面应该包含哪些项。

TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。


理论上,LinkedList的add(E元素)有一个O(1)

此外,在列表中间添加元素应该非常有效。

实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。

以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):

使用新一代硬件(更大、更高效的缓存),结果更为确凿:

LinkedList需要更多的时间来完成相同的任务。源源代码

这主要有两个原因:

主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。

顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。

需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:

Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference                           0.5 ns
Branch mispredict                            5   ns
L2 cache reference                           7   ns                      14x L1 cache
Mutex lock/unlock                           25   ns
Main memory reference                      100   ns                      20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy             3,000   ns        3 us
Send 1K bytes over 1 Gbps network       10,000   ns       10 us
Read 4K randomly from SSD*             150,000   ns      150 us          ~1GB/sec SSD
Read 1 MB sequentially from memory     250,000   ns      250 us
Round trip within same datacenter      500,000   ns      500 us
Read 1 MB sequentially from SSD*     1,000,000   ns    1,000 us    1 ms  ~1GB/sec SSD, 4X memory
Disk seek                           10,000,000   ns   10,000 us   10 ms  20x datacenter roundtrip
Read 1 MB sequentially from disk    20,000,000   ns   20,000 us   20 ms  80x memory, 20X SSD
Send packet CA->Netherlands->CA    150,000,000   ns  150,000 us  150 ms

来源:每个程序员都应该知道的延迟数

为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:

注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码

复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效


致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据

ArrayList是您想要的。LinkedList几乎总是一个(性能)bug。

为什么LinkedList很糟糕:

它使用了大量小内存对象,因此影响了整个过程的性能。许多小对象不利于缓存位置。任何索引操作都需要遍历,即具有O(n)性能。这在源代码中并不明显,导致算法O(n)比使用ArrayList时慢。获得好的表现是很棘手的。即使big-O性能与ArrayList相同,它也可能会明显变慢。在源代码中看到LinkedList很刺耳,因为它可能是错误的选择。

首先使用Vector而不是ArrayList,因为您可以覆盖insuranceCapasity方法,在ArrayList中是私有的,并添加1.5大小的当前数组https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html#ensureCapacity-整数-

在很多情况下,linkedList会更好,las有一个很大的优势:你可以高频插入数据,所以列表的大小变化很快,你不能为数字元素分配大小。从理论上讲,你可能会遇到“内存不足”之类的错误,但在现代计算机中,你有16G和交换磁盘,所以如果你列出的是billoins元素,与15-20年前相比,你可能失败。

您可以根据对该特定列表执行的操作的时间复杂性,使用一个而不是另一个。

|---------------------|---------------------|--------------------|------------|
|      Operation      |     ArrayList       |     LinkedList     |   Winner   |
|---------------------|---------------------|--------------------|------------|
|     get(index)      |       O(1)          |         O(n)       | ArrayList  |
|                     |                     |  n/4 steps in avg  |            |
|---------------------|---------------------|--------------------|------------|
|      add(E)         |       O(1)          |         O(1)       | LinkedList |
|                     |---------------------|--------------------|            |
|                     | O(n) in worst case  |                    |            |
|---------------------|---------------------|--------------------|------------|
|    add(index, E)    |       O(n)          |         O(n)       | LinkedList |
|                     |     n/2 steps       |      n/4 steps     |            |
|                     |---------------------|--------------------|            |
|                     |                     |  O(1) if index = 0 |            |
|---------------------|---------------------|--------------------|------------|
|  remove(index, E)   |       O(n)          |         O(n)       | LinkedList |
|                     |---------------------|--------------------|            |
|                     |     n/2 steps       |      n/4 steps     |            |
|---------------------|---------------------|--------------------|------------|
|  Iterator.remove()  |       O(n)          |         O(1)       | LinkedList |
|  ListIterator.add() |                     |                    |            |
|---------------------|---------------------|--------------------|------------|


|--------------------------------------|-----------------------------------|
|              ArrayList               |            LinkedList             |
|--------------------------------------|-----------------------------------|
|     Allows fast read access          |   Retrieving element takes O(n)   |
|--------------------------------------|-----------------------------------|
|   Adding an element require shifting | o(1) [but traversing takes time]  |
|       all the later elements         |                                   |
|--------------------------------------|-----------------------------------|
|   To add more elements than capacity |
|    new array need to be allocated    |
|--------------------------------------|