我一直是一个简单使用的人:
List<String> names = new ArrayList<>();
我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。
LinkedList何时应用于ArrayList,反之亦然?
我一直是一个简单使用的人:
List<String> names = new ArrayList<>();
我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。
LinkedList何时应用于ArrayList,反之亦然?
当前回答
ArrayList本质上是一个数组。LinkedList实现为双链接列表。
答案很清楚。O(1)表示ArrayList,因为ArrayList允许使用索引进行随机访问。O(n)表示LinkedList,因为它需要首先查找索引。注意:添加和删除有不同的版本。
LinkedList在添加和删除时速度更快,但在获取时速度较慢。简而言之,在以下情况下,应首选LinkedList:
元素没有大量的随机访问有大量的添加/删除操作
==阵列列表===
添加(E E)在ArrayList末尾添加需要内存大小调整成本。O(n)最差,O(1)摊销add(int索引,E元素)添加到特定索引位置需要移动和可能的内存调整成本O(n)删除(int索引)删除指定的元素需要移动和可能的内存调整成本O(n)删除(对象o)从此列表中删除第一个出现的指定元素需要先搜索元素,然后移动&可能的内存调整成本O(n)
==链接列表===
添加(E E)添加到列表末尾O(1)add(int索引,E元素)在指定位置插入需要先找到位置O(n)删除()删除列表的第一个元素O(1)删除(int索引)删除具有指定索引的元素需要先找到元素O(n)删除(对象o)删除指定元素的第一个引用需要先找到元素O(n)
这是programcreek.com中的一个图(add和remove是第一种类型,即在列表末尾添加元素,然后在列表中的指定位置删除元素):
其他回答
这取决于您将在列表中执行更多操作。
ArrayList访问索引值更快。插入或删除对象时,情况更糟。
要了解更多信息,请阅读任何关于数组和链接列表之间区别的文章。
1) 基础数据结构
ArrayList和LinkedList之间的第一个区别在于,ArrayList由Array支持,而LinkedList由LinkedList支持。这将导致性能的进一步差异。
2) LinkedList实现Deque
ArrayList和LinkedList之间的另一个区别是,除了List接口之外,LinkedList还实现了Deque接口,该接口为add()和poll()以及其他几个Deque函数提供先进先出操作。3) 在ArrayList中添加元素如果不触发Array的重新调整大小,则在ArrayList中添加元素是O(1)操作,在这种情况下,它变为O(log(n))。另一方面,在LinkedList中添加一个元素则是O(2)操作,因为它不需要任何导航。
4) 从位置移除元素
为了从特定索引中删除元素,例如通过调用remove(index),ArrayList执行复制操作,使其接近O(n),而LinkedList需要遍历到该点,这也使其成为O(n/2),因为它可以根据接近度从任意方向遍历。
5) 遍历ArrayList或LinkedList
迭代是LinkedList和ArrayList的O(n)操作,其中n是元素的数量。
6) 从位置检索元素
get(index)操作在ArrayList中为O(1),而在LinkedList中为其O(n/2),因为它需要遍历该条目。虽然,在大O符号中,O(n/2)只是O(n),因为我们忽略了那里的常数。
7) 内存
LinkedList使用一个包装对象Entry,这是一个静态嵌套类,用于存储数据和下一个和上一个节点,而ArrayList只在Array中存储数据。
因此,除了Array在将内容从一个Array复制到另一个Array时执行重新调整大小操作的情况外,ArrayList的内存需求似乎比LinkedList少。
如果Array足够大,那么此时可能会占用大量内存并触发垃圾收集,这会降低响应时间。
从ArrayList与LinkedList之间的所有差异来看,ArrayList在几乎所有情况下都是比LinkedList更好的选择,除非您经常执行add()操作而不是remove()或get()操作。
修改链接列表比修改ArrayList更容易,尤其是当您从开始或结束处添加或删除元素时,因为链接列表内部保留了这些位置的引用,并且可以在O(1)时间内访问。
换句话说,您不需要遍历链接列表就可以到达要添加元素的位置,在这种情况下,添加就变成了O(n)操作。例如,在链接列表中间插入或删除元素。
在我看来,在Java中,使用ArrayList而不是LinkedList来实现大多数实际用途。
TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。
理论上,LinkedList的add(E元素)有一个O(1)
此外,在列表中间添加元素应该非常有效。
实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。
以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):
使用新一代硬件(更大、更高效的缓存),结果更为确凿:
LinkedList需要更多的时间来完成相同的任务。源源代码
这主要有两个原因:
主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。
顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。
需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms
来源:每个程序员都应该知道的延迟数
为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:
注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码
复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效
致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据
ArrayList本质上是一个数组。LinkedList实现为双链接列表。
答案很清楚。O(1)表示ArrayList,因为ArrayList允许使用索引进行随机访问。O(n)表示LinkedList,因为它需要首先查找索引。注意:添加和删除有不同的版本。
LinkedList在添加和删除时速度更快,但在获取时速度较慢。简而言之,在以下情况下,应首选LinkedList:
元素没有大量的随机访问有大量的添加/删除操作
==阵列列表===
添加(E E)在ArrayList末尾添加需要内存大小调整成本。O(n)最差,O(1)摊销add(int索引,E元素)添加到特定索引位置需要移动和可能的内存调整成本O(n)删除(int索引)删除指定的元素需要移动和可能的内存调整成本O(n)删除(对象o)从此列表中删除第一个出现的指定元素需要先搜索元素,然后移动&可能的内存调整成本O(n)
==链接列表===
添加(E E)添加到列表末尾O(1)add(int索引,E元素)在指定位置插入需要先找到位置O(n)删除()删除列表的第一个元素O(1)删除(int索引)删除具有指定索引的元素需要先找到元素O(n)删除(对象o)删除指定元素的第一个引用需要先找到元素O(n)
这是programcreek.com中的一个图(add和remove是第一种类型,即在列表末尾添加元素,然后在列表中的指定位置删除元素):
到目前为止,除了人们普遍认为LinkedList比ArrayList“多得多”之外,似乎没有人解决这些列表中每一个的内存占用问题,所以我做了一些数字处理,以证明这两个列表对于N个空引用所占的空间。
由于引用在其相对系统上是32位或64位(即使为空),因此我为32位和64位LinkedList和ArrayList包含了4组数据。
注意:ArrayList行显示的大小是用于修剪列表的-实际上,ArrayList中的后备数组的容量通常大于其当前元素计数。
注2:(感谢BeeOnRope)由于压缩Oops现在是默认值,从JDK6中期开始,以下64位机器的值将基本上与32位机器的对应值相匹配,当然,除非您特意关闭它。
结果清楚地表明,LinkedList比ArrayList多得多,尤其是元素数非常高的情况。如果内存是一个因素,请避开LinkedList。
我使用的公式如下,如果我做错了什么,请告诉我,我会改正的对于32位或64位系统,b’是4或8,而n’是元素的数量。注意mods的原因是因为java中的所有对象都将占用8字节的倍数空间,而不管是否全部使用。
阵列列表:
ArrayList对象头+大小整数+modCount整数+数组引用+(数组项目头+b*n)+MOD
链接列表:
LinkedList对象标头+大小整数+modCount整数+对标头的引用+对页脚的引用+(节点对象开销+对上一元素的引用+下一元素的参考+对元素的引用)*n)+MOD(节点对象,8)*n+MOD, 8)