我试图监控一个使用CUDA和MPI的进程,有没有办法我可以做到这一点,像命令“顶部”,但也监控GPU ?


当前回答

我不知道有什么东西可以结合这些信息,但你可以使用nvidia-smi工具来获取原始数据,就像这样(感谢@jmsu关于-l的提示):

$ nvidia-smi -q -g 0 -d UTILIZATION -l

==============NVSMI LOG==============

Timestamp                       : Tue Nov 22 11:50:05 2011

Driver Version                  : 275.19

Attached GPUs                   : 2

GPU 0:1:0
    Utilization
        Gpu                     : 0 %
        Memory                  : 0 %

其他回答

Prometheus GPU Metrics exporters (PGME)利用了nvidai-smi二进制文件。你可以试试这个。一旦运行了导出器,就可以通过http://localhost:9101/metrics访问它。对于两个gpu,示例结果如下所示:

temperature_gpu{gpu="TITAN X (Pascal)[0]"} 41
utilization_gpu{gpu="TITAN X (Pascal)[0]"} 0
utilization_memory{gpu="TITAN X (Pascal)[0]"} 0
memory_total{gpu="TITAN X (Pascal)[0]"} 12189
memory_free{gpu="TITAN X (Pascal)[0]"} 12189
memory_used{gpu="TITAN X (Pascal)[0]"} 0
temperature_gpu{gpu="TITAN X (Pascal)[1]"} 78
utilization_gpu{gpu="TITAN X (Pascal)[1]"} 95
utilization_memory{gpu="TITAN X (Pascal)[1]"} 59
memory_total{gpu="TITAN X (Pascal)[1]"} 12189
memory_free{gpu="TITAN X (Pascal)[1]"} 1738
memory_used{gpu="TITAN X (Pascal)[1]"} 10451

您可以使用监控程序glances及其GPU监控插件:

开源 安装方法:sudo apt-get install -y python-pip;Sudo PIP安装[gpu] 启动:sudo扫视

它还监视CPU、磁盘IO、磁盘空间、网络和其他一些东西:

使用参数"——query-compute-apps="

nvidia-smi --query-compute-apps=pid,process_name,used_memory --format=csv

如需进一步帮助,请关注

nvidia-smi --help-query-compute-app

要获得使用资源的实时洞察,请执行:

Nvidia-smi -l

这将在每一秒循环并调用视图。

如果你不想在控制台历史记录中保留循环调用的过去痕迹,你也可以这样做:

观看-n0.1 nvidia-smi

其中0.1是时间间隔,单位为秒。

最近,我写了一个名为nvitop的监控工具,交互式NVIDIA-GPU进程查看器。

它是用纯Python编写的,易于安装。

从PyPI安装:

pip3 install --upgrade nvitop

从GitHub安装最新版本(推荐):

pip3 install git+https://github.com/XuehaiPan/nvitop.git#egg=nvitop

作为资源监视器运行:

nvitop -m

nvitop将像nvidia-smi一样显示GPU状态,但有额外的花式条和历史图。

对于进程,它将使用psutil收集进程信息,并显示USER, %CPU, %MEM, TIME和COMMAND字段,这比nvidia-smi详细得多。此外,它在监控模式下响应用户输入。您可以中断或终止gpu上的进程。

Nvitop提供了一个树视图屏幕和一个环境屏幕:


此外,nvitop还可以集成到其他应用程序中。例如,集成到PyTorch训练代码:

import os
from nvitop.core import host, CudaDevice, HostProcess, GpuProcess
from torch.utils.tensorboard import SummaryWriter

device = CudaDevice(0)
this_process = GpuProcess(os.getpid(), device)
writer = SummaryWriter()
for epoch in range(n_epochs):

    # some training code here
    # ...

    this_process.update_gpu_status()
    writer.add_scalars(
        'monitoring',
        {
            'device/memory_used': float(device.memory_used()) / (1 << 20),  # convert bytes to MiBs
            'device/memory_percent': device.memory_percent(),
            'device/memory_utilization': device.memory_utilization(),
            'device/gpu_utilization': device.gpu_utilization(),

            'host/cpu_percent': host.cpu_percent(),
            'host/memory_percent': host.virtual_memory().percent,

            'process/cpu_percent': this_process.cpu_percent(),
            'process/memory_percent': this_process.memory_percent(),
            'process/used_gpu_memory': float(this_process.gpu_memory()) / (1 << 20),  # convert bytes to MiBs
            'process/gpu_sm_utilization': this_process.gpu_sm_utilization(),
            'process/gpu_memory_utilization': this_process.gpu_memory_utilization(),
        },
        global_step
    )

详情见https://github.com/XuehaiPan/nvitop。

注意:nvitop已获得GPLv3 License和Apache-2.0 License的双重授权。请随意将其作为您自己项目的依赖项使用。详见版权声明。