我的背景——在Hadoop世界工作了4周。使用Cloudera的Hadoop VM对Hive, Pig和Hadoop进行了一些尝试。已阅读谷歌关于Map-Reduce和GFS的论文(PDF链接)。

我明白——

猪的语言猪的拉丁语是一种转变 来自(适合程序员的思维方式) SQL喜欢声明式的 编程和Hive的查询语言密切相关 类似于SQL。 Pig位于Hadoop之上 原则也可以凌驾于之上 德律阿得斯。我可能错了,但蜂巢错了 与Hadoop紧密耦合。 都是Pig Latin和Hive命令 编译映射和减少作业。

我的问题是——当一个(比如猪)可以达到目的时,拥有两者的目标是什么?难道只是因为雅虎宣传了Pig !和Facebook的Hive ?


当前回答

猪什么都吃!这意味着它可以使用非结构化数据。

Hive需要一个模式。

其他回答

您可以通过pig/hive查询实现类似的结果。主要的区别在于理解/编写/创建查询的方法。

Pig倾向于创建数据流:在每个步骤中进行一些处理的小步骤 Hive提供了类似SQL的语言来操作数据,因此从RDBMS转换更容易(Pig对于没有SQL经验的人来说更容易)

同样值得注意的是,对于Hive来说,你可以很好的界面来处理这些数据(Beeswax for HUE,或Hive web界面),它还为你提供了关于你的数据的信息(模式等)的亚metastore,这是关于你的数据的一个有用的中心信息。

我同时使用Hive和Pig,用于不同的查询(我使用它可以更快/更容易地编写查询,我这样做主要是临时查询)-它们可以使用相同的数据作为输入。但目前我的大部分工作都是通过Beeswax完成的。

我发现这个是最有帮助的(尽管它已经有一年的历史了)——http://yahoohadoop.tumblr.com/post/98256601751/pig-and-hive-at-yahoo

它特别谈到了Pig vs Hive,以及他们在雅虎的工作时间和地点。我发现这很有见地。一些有趣的笔记:

关于数据集的增量更改/更新:

方法来连接新的增量数据并使用 结果与以前的结果完全连接在一起就是 正确的方法。这只需要几分钟。标准数据库 操作可以以这种增量的方式在Pig Latin中实现, 这使得Pig成为这个用例的好工具。

关于通过流媒体使用其他工具:

猪与流媒体的集成也使研究人员很容易 使用他们已经调试过的Perl或Python脚本 数据集,并在一个巨大的数据集上运行。

关于使用Hive进行数据仓库:

In both cases, the relational model and SQL are the best fit. Indeed, data warehousing has been one of the core use cases for SQL through much of its history. It has the right constructs to support the types of queries and tools that analysts want to use. And it is already in use by both the tools and users in the field. The Hadoop subproject Hive provides a SQL interface and relational model for Hadoop. The Hive team has begun work to integrate with BI tools via interfaces such as ODBC.

我相信你的问题的真正答案是,它们是/是独立的项目,没有集中协调的目标。他们在早期处于不同的空间,随着两个项目的扩展,随着时间的推移逐渐重叠。

摘自Hadoop O'Reilly的书:

Pig:一种数据流语言 探索环境非常大 数据集。 Hive:分布式数据仓库

Pig允许在管道中的任何位置加载数据和用户代码。如果数据是流数据,例如来自卫星或仪器的数据,这一点可能特别重要。

Hive是基于RDBMS的,它需要首先导入(或加载)数据,然后才能对其进行处理。因此,如果您在流数据上使用Hive,您将不得不不断填充桶(或文件),并在每个填充桶上使用Hive,同时使用其他桶来继续存储新到达的数据。

Pig也使用惰性求值。它使编程变得更加容易,人们可以用它来以不同的方式分析数据,比在像Hive这样的SQL类语言中更自由。因此,如果你真的想分析一些你拥有的非结构化数据中的矩阵或模式,并想对它们进行有趣的计算,使用Pig你可以走得很远,而使用Hive,你需要其他东西来处理结果。

Pig在数据导入方面更快,但在实际执行方面比像Hive这样的RDBMS友好语言要慢。

Pig非常适合并行化,因此它可能在数据集庞大的系统中具有优势,即在您更关心结果吞吐量而不是延迟(获得任何特定结果数据的时间)的系统中。

〇蜂巢Vs猪

Hive是一个SQL接口,允许SQL精明的用户或其他工具,如Tableu/Microstrategy/任何其他工具或语言,有SQL接口。

PIG更像是一个ETL管道,有一步一步的命令,比如声明变量、循环、迭代、条件语句等。

当我想编写复杂的分步逻辑时,我更喜欢编写Pig脚本而不是hive QL。当我很舒服地写一个sql拉数据我想我使用Hive。对于hive,你需要在查询之前定义表(就像你在RDBMS中做的那样)

两者的目的不同,但在引子下,两者都做相同的,转换为映射减少程序。此外,Apache开源社区正在为这两个项目添加越来越多的特性