我的背景——在Hadoop世界工作了4周。使用Cloudera的Hadoop VM对Hive, Pig和Hadoop进行了一些尝试。已阅读谷歌关于Map-Reduce和GFS的论文(PDF链接)。

我明白——

猪的语言猪的拉丁语是一种转变 来自(适合程序员的思维方式) SQL喜欢声明式的 编程和Hive的查询语言密切相关 类似于SQL。 Pig位于Hadoop之上 原则也可以凌驾于之上 德律阿得斯。我可能错了,但蜂巢错了 与Hadoop紧密耦合。 都是Pig Latin和Hive命令 编译映射和减少作业。

我的问题是——当一个(比如猪)可以达到目的时,拥有两者的目标是什么?难道只是因为雅虎宣传了Pig !和Facebook的Hive ?


当前回答

从链接: http://www.aptibook.com/discuss-technical?uid=tech-hive4&question=What-kind-of-datawarehouse-application-is-suitable-for-Hive?

Hive不是一个完整的数据库。Hadoop和HDFS的设计约束和局限性限制了Hive的功能。

Hive最适合数据仓库应用,其中

1)分析相对静态的数据,

2)不需要快速响应时间,并且

3)当数据变化不迅速时。

Hive没有提供OLTP(在线事务处理)所需的关键特性。它更接近于OLAP工具,在线分析处理。 因此,Hive最适合数据仓库应用程序,其中维护和挖掘大型数据集以获得见解、报告等。

其他回答

看看这篇来自Alan Gates的文章,他是Yahoo!,这与使用Hive而不是Pig这样的SQL进行了比较。他给出了一个非常有说服力的例子,说明了像Pig这样的过程性语言(相对于声明性SQL)的有用性,以及它对数据流设计人员的实用性。

我找到了下面有用的链接来探索如何以及何时使用HIVE和PIG。

http://www.hadoopwizard.com/when-to-use-pig-latin-versus-hive-sql/

看看“dezyre”文章中关于猪和蜂巢的坚果壳比较

Hive在分区、服务器、Web接口和JDBC/ODBC支持方面优于PIG。

一些差异:

Hive is best for structured Data & PIG is best for semi structured data Hive is used for reporting & PIG for programming Hive is used as a declarative SQL & PIG as a procedural language Hive supports partitions & PIG does not Hive can start an optional thrift based server & PIG cannot Hive defines tables beforehand (schema) + stores schema information in a database & PIG doesn't have a dedicated metadata of database Hive does not support Avro but PIG does. EDIT: Hive supports Avro, specify the serde as org.apache.hadoop.hive.serde2.avro Pig also supports additional COGROUP feature for performing outer joins but hive does not. But both Hive & PIG can join, order & sort dynamically.

一般来说,Pig对于ETL类型的工作负载很有用。例如,您每天需要对数据进行的一组转换。

当你需要运行特别的查询或只是想要探索数据时,Hive就会发挥作用。它有时可以作为可视化层(Tableau/Qlikview)的接口。

两者都是必不可少的,但目的不同。

简单来说,Pig是一个高级平台,用于创建与Hadoop一起使用的MapReduce程序,使用Pig脚本我们将把大量数据处理成所需的格式。

一旦得到处理后的数据,这些处理后的数据就会保存在HDFS中,以便后续处理以获得所需的结果。

在存储的处理数据之上,我们将应用HIVE SQL命令来获得所需的结果,在内部这个HIVE SQL命令运行MAP Reduce程序。