在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
当前回答
我今天遇到了这个问题,在我想检查SO之前,我推出了自己的解决方案
dict((i,a.count(i)) for i in a)
对于大列表来说真的很慢。我的解决方案
def occurDict(items):
d = {}
for i in items:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
实际上比Counter解决方案快一点,至少对于Python 2.7来说是这样。
其他回答
我今天遇到了这个问题,在我想检查SO之前,我推出了自己的解决方案
dict((i,a.count(i)) for i in a)
对于大列表来说真的很慢。我的解决方案
def occurDict(items):
d = {}
for i in items:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
实际上比Counter解决方案快一点,至少对于Python 2.7来说是这样。
sum([1 for elem in <yourlist> if elem==<your_value>])
这将返回值的出现次数
给定列表X
import numpy as np
X = [1, -1, 1, -1, 1]
显示此列表元素的i:frequency(i)的字典为:
{i:X.count(i) for i in np.unique(X)}
输出:
{-1: 2, 1: 3}
建议使用numpy的bincount,但它只适用于具有非负整数的1d数组。此外,生成的数组可能会令人困惑(它包含原始列表中从最小值到最大值的整数,并将缺失的整数设置为0)。
使用numpy的更好方法是使用属性return_counts设置为True的唯一函数。它返回一个元组,其中包含一个唯一值数组和每个唯一值的出现数组。
# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True) # array([0, 1, 2, 3]), array([2, 3, 1, 2]
然后我们可以将它们配对为
dict(zip(a_uniq, counts)) # {0: 2, 1: 3, 2: 1, 3: 2}
它也适用于其他数据类型和“2d列表”,例如。
>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}
mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))
这给了
{'compte': 1, 'france': 4, 'zied': 0}