为什么~2等于-3?~操作符是如何工作的?
当前回答
int = 4; System.out.println (~); 结果是:-5
Java中任意整数的“~”表示1对no的补。 例如,我取~4,这意味着用二进制表示0100。 首先, 整数长度为4字节,i。e4 *8(8位1字节)=32。 在系统内存中,4表示为 0000 0000 0000 0000 0000 0000 0000 0100 现在~操作符将对上面的二进制no执行1的补
i.e 1111 1111 1111 1111 1111 1111 1111 1011->1's complement the most significant bit represents sign of the no(either - or +) if it is 1 then sign is '-' if it is 0 then sign is '+' as per this our result is a negative number, in java the negative numbers are stored in 2's complement form, the acquired result we have to convert into 2's complement( first perform 1's complement and just add 1 to 1's complement). all the one will become zeros,except most significant bit 1(which is our sign representation of the number,that means for remaining 31 bits 1111 1111 1111 1111 1111 1111 1111 1011 (acquired result of ~ operator) 1000 0000 0000 0000 0000 0000 0000 0100 (1's complement)
1(2的补数)
1000000 0000 0000 0000 0000 0000 0000 0101 现在结果是-5 查看视频<[java中的位运算符]https://youtu.be/w4pJ4cGWe9Y的链接
其他回答
位补操作符(~)是一个一元操作符。
它的工作原理如下
首先,它将给定的十进制数转换为相应的二进制数 价值。这是在2的情况下,它首先将2转换为0000 0010(到8位二进制数)。
然后它将数字中的所有1都转换为0,所有0都转换为1,然后数字将变成11111101。
这是-3的2的补表示。
为了找到无符号的值使用补,即。要简单地将1111 1101转换为十进制(=4294967293),只需在打印时使用%u。
记住,负数被存储为正数的补数。作为一个例子,这里是-2在2的补码中的表示:(8位)
1111 1110
得到它的方法是取一个数字的二进制表示,取它的补位(所有位的倒数),然后加1。Two从0000 0010开始,通过反转位,我们得到1111 1101。加1得到上面的结果。第一个位是符号位,表示负号。
那么让我们看看如何得到~2 = -3:
这里还有两个:
0000 0010
简单地翻转所有的位,我们得到:
1111 1101
那么-3在2的补中是什么样的呢?从正3,0000 0011开始,将所有位翻转到1111 1100,并添加1位成为负值(-3),1111 1101。
所以如果你简单地将2中的位反转,你就得到了2的-3的补表示。
补运算符(~)只是翻转位。由机器来解释这些比特。
Tl;dr ~翻转比特。结果符号就改变了。~2是负数(0b..101)。要输出一个负数红宝石打印-,则2的~2的补:-(~~2 + 1)== -(2 + 1)== 3。正数按原样输出。
有一个内部值,和它的字符串表示。对于正整数,它们基本重合:
irb(main):001:0> '%i' % 2
=> "2"
irb(main):002:0> 2
=> 2
后者相当于:
irb(main):003:0> 2.to_s
"2"
~翻转内部值的位。2 = 0b010。~2是0b..101。两个点(..)代表无限个1。由于结果的最高有效位(MSB)为1,因此结果为负数((~2)。= = true)。要输出一个负数的红宝石印-,则是二的内部补值。2的补位是通过翻转位,然后加1来计算的。0b的2的补。101等于3。是这样的:
irb(main):005:0> '%b' % 2
=> "10"
irb(main):006:0> '%b' % ~2
=> "..101"
irb(main):007:0> ~2
=> -3
总的来说,它翻转了位,从而改变了符号。为了输出一个负数,它输出-,然后~~2 + 1(~~2 == 2)。
ruby像这样输出负数的原因是,它将存储的值视为绝对值的2的补。换句话说,存储的是0b..101。它是一个负数,因此它是x的2的补,为了找到x,它是2的补0b..101。它是2的x的补,也就是x(例如~(~2 + 1)+ 1 == 2)。
如果你将~应用于一个负数,它只是翻转位(尽管如此,这改变了符号):
irb(main):008:0> '%b' % -3
=> "..101"
irb(main):009:0> '%b' % ~-3
=> "10"
irb(main):010:0> ~-3
=> 2
更令人困惑的是~0xffffff00 != 0xff(或MSB等于1的任何其他值)。让我们稍微简化一下:~0xf0 != 0x0f。这是因为它将0xf0视为正数。这是有道理的。因此,~0xf0 == 0x..f0f。结果是一个负数。0x的2的补。F0f是0xf1。所以:
irb(main):011:0> '%x' % ~0xf0
=> "..f0f"
irb(main):012:0> (~0xf0).to_s(16)
=> "-f1"
如果你不打算对结果应用位操作符,你可以考虑~作为-x - 1操作符:
irb(main):018:0> -2 - 1
=> -3
irb(main):019:0> --3 - 1
=> 2
但可以说,这并没有多大用处。
举个例子,假设你有一个8位的网络掩码(为了简单起见),你想计算0的个数。您可以通过翻转位并调用bit_length (0x0f. bit_length)来计算它们。bit_length == 4). But ~0xf0 == 0x..F0f,所以我们要去掉不需要的部分
irb(main):014:0> '%x' % (~0xf0 & 0xff)
=> "f"
irb(main):015:0> (~0xf0 & 0xff).bit_length
=> 4
或者你可以使用XOR运算符(^):
irb(main):016:0> i = 0xf0
irb(main):017:0> '%x' % i ^ ((1 << i.bit_length) - 1)
=> "f"
Javascript波浪号(~)将给定值强制转换为1的补位——所有位都是反向的。 这就是波浪的作用。这不是固执己见。它既不加也不减任何量。
0 -> 1
1 -> 0
...in every bit position [0...integer nbr of bits - 1]
On standard desktop processors using high-level languages like JavaScript, BASE10 signed arithmetic is the most common, but keep in mind, it's not the only kind. Bits at the CPU level are subject to interpretation based on a number of factors. At the 'code' level, in this case JavaScript, they are interpreted as a 32-bit signed integer by definition (let's leave floats out of this). Think of it as quantum, those 32-bits represent many possible values all at once. It depends entirely on the converting lens you view them through.
JavaScript Tilde operation (1's complement)
BASE2 lens
~0001 -> 1110 - end result of ~ bitwise operation
BASE10 Signed lens (typical JS implementation)
~1 -> -2
BASE10 Unsigned lens
~1 -> 14
以上所有观点同时都是正确的。
简单的 ...........
作为任何数字的2的补,我们可以通过将所有1逆为0来计算,反之亦然,然后再加上1。
这里N= ~N产生的结果总是-(N+1)。因为系统以2的补码的形式存储数据,这意味着它像这样存储~N。
~N = -(~(~N)+1) =-(N+1).
例如::
N = 10 = 1010
Than ~N = 0101
so ~(~N) = 1010
so ~(~N) +1 = 1011
点就是负的原点。我的观点是假设我们有32位寄存器,这意味着2^31 -1位涉及到操作,剩下的一位在早期计算(补码)中被存储为符号位,通常为1。结果是~10 = -11。
~(-11) =10;
如果printf("%d",~0);结果是-1;
但printf(“%u”,~0)比结果:4294967295在32位机器上。