我如何初始化网络的权重和偏差(通过例如He或Xavier初始化)?
当前回答
如果您想要一些额外的灵活性,还可以手动设置权重。
假设你有所有1的输入:
import torch
import torch.nn as nn
input = torch.ones((8, 8))
print(input)
tensor([[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.]])
你想要做一个没有偏差的密集层(所以我们可以可视化):
d = nn.Linear(8, 8, bias=False)
将所有权重设置为0.5(或任何其他值):
d.weight.data = torch.full((8, 8), 0.5)
print(d.weight.data)
权重:
Out[14]:
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000]])
你的重量现在都是0.5。传递数据:
d(input)
Out[13]:
tensor([[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.]], grad_fn=<MmBackward>)
请记住,每个神经元接收8个输入,所有输入的权重都为0.5,值为1(并且没有偏差),因此每个神经元的总和为4。
其他回答
单层
要初始化单个图层的权重,请使用torch.nn.init中的函数。例如:
conv1 = torch.nn.Conv2d(...)
torch.nn.init.xavier_uniform(conv1.weight)
或者,您可以通过写入conv1.weight来修改参数。data(它是torch.Tensor)。例子:
conv1.weight.data.fill_(0.01)
这同样适用于偏见:
conv1.bias.data.fill_(0.01)
神经网络。顺序或自定义nn。模块
将初始化函数传递给torch.nn.Module.apply。它将初始化整个nn中的权重。递归地模块。
apply(fn):将fn递归应用到每个子模块(由.children()返回)和self。典型的用法包括初始化模型的参数(参见torch-nn-init)。
例子:
def init_weights(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform(m.weight)
m.bias.data.fill_(0.01)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
抱歉这么晚才来,希望我的回答能有所帮助。
用正态分布初始化权重:
torch.nn.init.normal_(tensor, mean=0, std=1)
或者使用常数分布:
torch.nn.init.constant_(tensor, value)
或者使用均匀分布:
torch.nn.init.uniform_(tensor, a=0, b=1) # a: lower_bound, b: upper_bound
你可以用其他方法来初始化张量
这是更好的方法,传递你的整个模型
import torch.nn as nn
def initialize_weights(model):
# Initializes weights according to the DCGAN paper
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d)):
nn.init.normal_(m.weight.data, 0.0, 0.02)
# if you also want for linear layers ,add one more elif condition
如果您看到deprecation警告(@Fábio Perez)…
def init_weights(m):
if type(m) == nn.Linear:
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
如果您想要一些额外的灵活性,还可以手动设置权重。
假设你有所有1的输入:
import torch
import torch.nn as nn
input = torch.ones((8, 8))
print(input)
tensor([[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.]])
你想要做一个没有偏差的密集层(所以我们可以可视化):
d = nn.Linear(8, 8, bias=False)
将所有权重设置为0.5(或任何其他值):
d.weight.data = torch.full((8, 8), 0.5)
print(d.weight.data)
权重:
Out[14]:
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000]])
你的重量现在都是0.5。传递数据:
d(input)
Out[13]:
tensor([[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.],
[4., 4., 4., 4., 4., 4., 4., 4.]], grad_fn=<MmBackward>)
请记住,每个神经元接收8个输入,所有输入的权重都为0.5,值为1(并且没有偏差),因此每个神经元的总和为4。