虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

最简单的方法是使用__slots__:

class A(object):
    __slots__ = []

A的实例现在是不可变的,因为您不能在它们上设置任何属性。

如果你想让类实例包含数据,你可以将this和derived from tuple结合起来:

from operator import itemgetter
class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    x = property(itemgetter(0))
    y = property(itemgetter(1))

p = Point(2, 3)
p.x
# 2
p.y
# 3

编辑:如果你想摆脱索引,你可以重写__getitem__():

class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    @property
    def x(self):
        return tuple.__getitem__(self, 0)
    @property
    def y(self):
        return tuple.__getitem__(self, 1)
    def __getitem__(self, item):
        raise TypeError

注意,不能使用operator。在这种情况下,属性的itemgetter,因为这将依赖于Point.__getitem__()而不是tuple.__getitem__()。此外,这不会阻止使用元组。__getitem__(p, 0),但我很难想象这应该如何构成一个问题。

我不认为创建不可变对象的“正确”方法是编写C扩展。Python通常依赖于库实现者和库用户是成年人,而不是真正强制执行接口,接口应该在文档中清楚地说明。这就是为什么我不认为通过调用object.__setattr__()来规避被重写的__setattr__()是一个问题的可能性。如果有人这么做,风险自负。

其他回答

我不认为这是完全可能的,除非使用一个元组或namedtuple。无论如何,如果你重写了__setattr__(),用户总是可以通过直接调用object.__setattr__()来绕过它。任何依赖__setattr__的解决方案都保证不起作用。

以下是不使用某种元组可以得到的最接近的结果:

class Immutable:
    __slots__ = ['a', 'b']
    def __init__(self, a, b):
        object.__setattr__(self, 'a', a)
        object.__setattr__(self, 'b', b)
    def __setattr__(self, *ignored):
        raise NotImplementedError
    __delattr__ = __setattr__

但如果你足够努力,它就会破裂:

>>> t = Immutable(1, 2)
>>> t.a
1
>>> object.__setattr__(t, 'a', 2)
>>> t.a
2

但Sven对namedtuple的使用确实是不可变的。

更新

由于这个问题已经更新为询问如何在C中正确地做这件事,下面是我关于如何在Cython中正确地做这件事的答案:

第一个immutable.pyx:

cdef class Immutable:
    cdef object _a, _b

    def __init__(self, a, b):
        self._a = a
        self._b = b

    property a:
        def __get__(self):
            return self._a

    property b:
        def __get__(self):
            return self._b

    def __repr__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)

和一个setup.py来编译它(使用命令setup.py build_ext——inplace:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("immutable", ["immutable.pyx"])]

setup(
  name = 'Immutable object',
  cmdclass = {'build_ext': build_ext},
  ext_modules = ext_modules
)

然后试试吧:

>>> from immutable import Immutable
>>> p = Immutable(2, 3)
>>> p
<Immutable 2, 3>
>>> p.a = 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: attribute 'a' of 'immutable.Immutable' objects is not writable
>>> object.__setattr__(p, 'a', 1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: attribute 'a' of 'immutable.Immutable' objects is not writable
>>> p.a, p.b
(2, 3)
>>>      

我刚刚想到的另一个解决方案是:获得与原始代码相同行为的最简单方法是

Immutable = collections.namedtuple("Immutable", ["a", "b"])

它并没有解决属性可以通过[0]等访问的问题,但至少它相当简短,并提供了与pickle和copy兼容的额外优势。

namedtuple创建了一个类似于我在这个答案中描述的类型,即从tuple派生并使用__slots__。它在Python 2.6或更高版本中可用。

我已经创建了一个小型类装饰器decorator,以使类不可变(除了在__init__内部)。作为https://github.com/google/etils的一部分。

from etils import epy


@epy.frozen
class A:

  def __init__(self):
    self.x = 123  # Inside `__init__`, attribute can be assigned

a = A()
a.x = 456  # AttributeError

这也支持继承。

实现:

_Cls = TypeVar('_Cls')


def frozen(cls: _Cls) -> _Cls:
  """Class decorator which prevent mutating attributes after `__init__`."""
  if not isinstance(cls, type):
    raise TypeError(f'{cls.__name__} is not a class.')

  cls.__init__ = _wrap_init(cls.__init__)
  cls.__setattr__ = _wrap_setattr(cls.__setattr__)
  return cls


def _wrap_init(init_fn):
  """`__init__` wrapper."""

  @functools.wraps(init_fn)
  def new_init(self, *args, **kwargs):
    if hasattr(self, '_epy_is_init_done'):
      # `_epy_is_init_done` already created, so it means we're
      # a `super().__init__` call.
      return init_fn(self, *args, **kwargs)
    object.__setattr__(self, '_epy_is_init_done', False)
    init_fn(self, *args, **kwargs)
    object.__setattr__(self, '_epy_is_init_done', True)

  return new_init

def _wrap_setattr(setattr_fn):
  """`__setattr__` wrapper."""

  @functools.wraps(setattr_fn)
  def new_setattr(self, name, value):
    if not hasattr(self, '_epy_is_init_done'):
      raise ValueError(
          'Child of `@epy.frozen` class should be `@epy.frozen` too. (Error'
          f' raised by {type(self)})'
      )
    if not self._epy_is_init_done:  # pylint: disable=protected-access
      return setattr_fn(self, name, value)
    else:
      raise AttributeError(
          f'Cannot assign {name!r} in `@epy.frozen` class {type(self)}'
      )

  return new_setattr

使用冻结的数据类

对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。

它看起来是这样的:

from dataclasses import dataclass

@dataclass(frozen=True)
class Immutable:
    a: Any
    b: Any

由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。

不使用命名元组的原因

在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:

from collections import namedtuple

ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])

obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)

obj1 == obj2  # will be True

如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。

这里有一个优雅的解决方案:

class Immutable(object):
    def __setattr__(self, key, value):
        if not hasattr(self, key):
            super().__setattr__(key, value)
        else:
            raise RuntimeError("Can't modify immutable object's attribute: {}".format(key))

从这个类继承,在构造函数中初始化字段,就完成了所有设置。