虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:
class Immutable(tuple):
def __new__(cls, a, b):
return tuple.__new__(cls, (a, b))
@property
def a(self):
return self[0]
@property
def b(self):
return self[1]
def __str__(self):
return "<Immutable {0}, {1}>".format(self.a, self.b)
def __setattr__(self, *ignored):
raise NotImplementedError
def __delattr__(self, *ignored):
raise NotImplementedError
但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。
这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?
(只能在python3中工作的答案是可以接受的)。
更新:
从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。
最简单的方法是使用__slots__:
class A(object):
__slots__ = []
A的实例现在是不可变的,因为您不能在它们上设置任何属性。
如果你想让类实例包含数据,你可以将this和derived from tuple结合起来:
from operator import itemgetter
class Point(tuple):
__slots__ = []
def __new__(cls, x, y):
return tuple.__new__(cls, (x, y))
x = property(itemgetter(0))
y = property(itemgetter(1))
p = Point(2, 3)
p.x
# 2
p.y
# 3
编辑:如果你想摆脱索引,你可以重写__getitem__():
class Point(tuple):
__slots__ = []
def __new__(cls, x, y):
return tuple.__new__(cls, (x, y))
@property
def x(self):
return tuple.__getitem__(self, 0)
@property
def y(self):
return tuple.__getitem__(self, 1)
def __getitem__(self, item):
raise TypeError
注意,不能使用operator。在这种情况下,属性的itemgetter,因为这将依赖于Point.__getitem__()而不是tuple.__getitem__()。此外,这不会阻止使用元组。__getitem__(p, 0),但我很难想象这应该如何构成一个问题。
我不认为创建不可变对象的“正确”方法是编写C扩展。Python通常依赖于库实现者和库用户是成年人,而不是真正强制执行接口,接口应该在文档中清楚地说明。这就是为什么我不认为通过调用object.__setattr__()来规避被重写的__setattr__()是一个问题的可能性。如果有人这么做,风险自负。
就像字典一样
我有一个开源库,在那里我以函数的方式做事情,所以在不可变对象中移动数据是有帮助的。但是,我不希望必须转换我的数据对象以便客户机与它们交互。所以,我想到了这个-它给你一个字典一样的对象,这是不可变的+一些帮助方法。
这要归功于Sven Marnach对限制属性更新和删除的基本执行的回答。
import json
# ^^ optional - If you don't care if it prints like a dict
# then rip this and __str__ and __repr__ out
class Immutable(object):
def __init__(self, **kwargs):
"""Sets all values once given
whatever is passed in kwargs
"""
for k,v in kwargs.items():
object.__setattr__(self, k, v)
def __setattr__(self, *args):
"""Disables setting attributes via
item.prop = val or item['prop'] = val
"""
raise TypeError('Immutable objects cannot have properties set after init')
def __delattr__(self, *args):
"""Disables deleting properties"""
raise TypeError('Immutable objects cannot have properties deleted')
def __getitem__(self, item):
"""Allows for dict like access of properties
val = item['prop']
"""
return self.__dict__[item]
def __repr__(self):
"""Print to repl in a dict like fashion"""
return self.pprint()
def __str__(self):
"""Convert to a str in a dict like fashion"""
return self.pprint()
def __eq__(self, other):
"""Supports equality operator
immutable({'a': 2}) == immutable({'a': 2})"""
if other is None:
return False
return self.dict() == other.dict()
def keys(self):
"""Paired with __getitem__ supports **unpacking
new = { **item, **other }
"""
return self.__dict__.keys()
def get(self, *args, **kwargs):
"""Allows for dict like property access
item.get('prop')
"""
return self.__dict__.get(*args, **kwargs)
def pprint(self):
"""Helper method used for printing that
formats in a dict like way
"""
return json.dumps(self,
default=lambda o: o.__dict__,
sort_keys=True,
indent=4)
def dict(self):
"""Helper method for getting the raw dict value
of the immutable object"""
return self.__dict__
辅助方法
def update(obj, **kwargs):
"""Returns a new instance of the given object with
all key/val in kwargs set on it
"""
return immutable({
**obj,
**kwargs
})
def immutable(obj):
return Immutable(**obj)
例子
obj = immutable({
'alpha': 1,
'beta': 2,
'dalet': 4
})
obj.alpha # 1
obj['alpha'] # 1
obj.get('beta') # 2
del obj['alpha'] # TypeError
obj.alpha = 2 # TypeError
new_obj = update(obj, alpha=10)
new_obj is not obj # True
new_obj.get('alpha') == 10 # True
另一个想法是完全不允许__setattr__而使用object。构造函数中的__setattr__:
class Point(object):
def __init__(self, x, y):
object.__setattr__(self, "x", x)
object.__setattr__(self, "y", y)
def __setattr__(self, *args):
raise TypeError
def __delattr__(self, *args):
raise TypeError
当然你可以用object。__setattr__(p, "x", 3)来修改一个Point实例p,但您的原始实现遭受同样的问题(尝试tuple。__setattr__(i, "x", 42)在一个不可变实例)。
您可以在原始实现中应用相同的技巧:去掉__getitem__(),并在属性函数中使用tuple.__getitem__()。
使用冻结的数据类
对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。
它看起来是这样的:
from dataclasses import dataclass
@dataclass(frozen=True)
class Immutable:
a: Any
b: Any
由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。
不使用命名元组的原因
在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:
from collections import namedtuple
ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])
obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)
obj1 == obj2 # will be True
如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。