虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

使用冻结的数据类

对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。

它看起来是这样的:

from dataclasses import dataclass

@dataclass(frozen=True)
class Immutable:
    a: Any
    b: Any

由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。

不使用命名元组的原因

在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:

from collections import namedtuple

ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])

obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)

obj1 == obj2  # will be True

如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。

其他回答

我已经创建了一个小型类装饰器decorator,以使类不可变(除了在__init__内部)。作为https://github.com/google/etils的一部分。

from etils import epy


@epy.frozen
class A:

  def __init__(self):
    self.x = 123  # Inside `__init__`, attribute can be assigned

a = A()
a.x = 456  # AttributeError

这也支持继承。

实现:

_Cls = TypeVar('_Cls')


def frozen(cls: _Cls) -> _Cls:
  """Class decorator which prevent mutating attributes after `__init__`."""
  if not isinstance(cls, type):
    raise TypeError(f'{cls.__name__} is not a class.')

  cls.__init__ = _wrap_init(cls.__init__)
  cls.__setattr__ = _wrap_setattr(cls.__setattr__)
  return cls


def _wrap_init(init_fn):
  """`__init__` wrapper."""

  @functools.wraps(init_fn)
  def new_init(self, *args, **kwargs):
    if hasattr(self, '_epy_is_init_done'):
      # `_epy_is_init_done` already created, so it means we're
      # a `super().__init__` call.
      return init_fn(self, *args, **kwargs)
    object.__setattr__(self, '_epy_is_init_done', False)
    init_fn(self, *args, **kwargs)
    object.__setattr__(self, '_epy_is_init_done', True)

  return new_init

def _wrap_setattr(setattr_fn):
  """`__setattr__` wrapper."""

  @functools.wraps(setattr_fn)
  def new_setattr(self, name, value):
    if not hasattr(self, '_epy_is_init_done'):
      raise ValueError(
          'Child of `@epy.frozen` class should be `@epy.frozen` too. (Error'
          f' raised by {type(self)})'
      )
    if not self._epy_is_init_done:  # pylint: disable=protected-access
      return setattr_fn(self, name, value)
    else:
      raise AttributeError(
          f'Cannot assign {name!r} in `@epy.frozen` class {type(self)}'
      )

  return new_setattr

最简单的方法是使用__slots__:

class A(object):
    __slots__ = []

A的实例现在是不可变的,因为您不能在它们上设置任何属性。

如果你想让类实例包含数据,你可以将this和derived from tuple结合起来:

from operator import itemgetter
class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    x = property(itemgetter(0))
    y = property(itemgetter(1))

p = Point(2, 3)
p.x
# 2
p.y
# 3

编辑:如果你想摆脱索引,你可以重写__getitem__():

class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    @property
    def x(self):
        return tuple.__getitem__(self, 0)
    @property
    def y(self):
        return tuple.__getitem__(self, 1)
    def __getitem__(self, item):
        raise TypeError

注意,不能使用operator。在这种情况下,属性的itemgetter,因为这将依赖于Point.__getitem__()而不是tuple.__getitem__()。此外,这不会阻止使用元组。__getitem__(p, 0),但我很难想象这应该如何构成一个问题。

我不认为创建不可变对象的“正确”方法是编写C扩展。Python通常依赖于库实现者和库用户是成年人,而不是真正强制执行接口,接口应该在文档中清楚地说明。这就是为什么我不认为通过调用object.__setattr__()来规避被重写的__setattr__()是一个问题的可能性。如果有人这么做,风险自负。

这里没有包括的是完全不可变性……不仅仅是父对象,还有所有的子对象。例如,元组/frozensets可能是不可变的,但它所属的对象可能不是。下面是一个小的(不完整的)版本,它在执行不变性方面做得很好:

# Initialize lists
a = [1,2,3]
b = [4,5,6]
c = [7,8,9]

l = [a,b]

# We can reassign in a list 
l[0] = c

# But not a tuple
t = (a,b)
#t[0] = c -> Throws exception
# But elements can be modified
t[0][1] = 4
t
([1, 4, 3], [4, 5, 6])
# Fix it back
t[0][1] = 2

li = ImmutableObject(l)
li
[[1, 2, 3], [4, 5, 6]]
# Can't assign
#li[0] = c will fail
# Can reference
li[0]
[1, 2, 3]
# But immutability conferred on returned object too
#li[0][1] = 4 will throw an exception

# Full solution should wrap all the comparison e.g. decorators.
# Also, you'd usually want to add a hash function, i didn't put
# an interface for that.

class ImmutableObject(object):
    def __init__(self, inobj):
        self._inited = False
        self._inobj = inobj
        self._inited = True

    def __repr__(self):
        return self._inobj.__repr__()

    def __str__(self):
        return self._inobj.__str__()

    def __getitem__(self, key):
        return ImmutableObject(self._inobj.__getitem__(key))

    def __iter__(self):
        return self._inobj.__iter__()

    def __setitem__(self, key, value):
        raise AttributeError, 'Object is read-only'

    def __getattr__(self, key):
        x = getattr(self._inobj, key)
        if callable(x):
              return x
        else:
              return ImmutableObject(x)

    def __hash__(self):
        return self._inobj.__hash__()

    def __eq__(self, second):
        return self._inobj.__eq__(second)

    def __setattr__(self, attr, value):
        if attr not in  ['_inobj', '_inited'] and self._inited == True:
            raise AttributeError, 'Object is read-only'
        object.__setattr__(self, attr, value)

就像字典一样

我有一个开源库,在那里我以函数的方式做事情,所以在不可变对象中移动数据是有帮助的。但是,我不希望必须转换我的数据对象以便客户机与它们交互。所以,我想到了这个-它给你一个字典一样的对象,这是不可变的+一些帮助方法。

这要归功于Sven Marnach对限制属性更新和删除的基本执行的回答。

import json 
# ^^ optional - If you don't care if it prints like a dict
# then rip this and __str__ and __repr__ out

class Immutable(object):

    def __init__(self, **kwargs):
        """Sets all values once given
        whatever is passed in kwargs
        """
        for k,v in kwargs.items():
            object.__setattr__(self, k, v)

    def __setattr__(self, *args):
        """Disables setting attributes via
        item.prop = val or item['prop'] = val
        """
        raise TypeError('Immutable objects cannot have properties set after init')

    def __delattr__(self, *args):
        """Disables deleting properties"""
        raise TypeError('Immutable objects cannot have properties deleted')

    def __getitem__(self, item):
        """Allows for dict like access of properties
        val = item['prop']
        """
        return self.__dict__[item]

    def __repr__(self):
        """Print to repl in a dict like fashion"""
        return self.pprint()

    def __str__(self):
        """Convert to a str in a dict like fashion"""
        return self.pprint()

    def __eq__(self, other):
        """Supports equality operator
        immutable({'a': 2}) == immutable({'a': 2})"""
        if other is None:
            return False
        return self.dict() == other.dict()

    def keys(self):
        """Paired with __getitem__ supports **unpacking
        new = { **item, **other }
        """
        return self.__dict__.keys()

    def get(self, *args, **kwargs):
        """Allows for dict like property access
        item.get('prop')
        """
        return self.__dict__.get(*args, **kwargs)

    def pprint(self):
        """Helper method used for printing that
        formats in a dict like way
        """
        return json.dumps(self,
            default=lambda o: o.__dict__,
            sort_keys=True,
            indent=4)

    def dict(self):
        """Helper method for getting the raw dict value
        of the immutable object"""
        return self.__dict__

辅助方法

def update(obj, **kwargs):
    """Returns a new instance of the given object with
    all key/val in kwargs set on it
    """
    return immutable({
        **obj,
        **kwargs
    })

def immutable(obj):
    return Immutable(**obj)

例子

obj = immutable({
    'alpha': 1,
    'beta': 2,
    'dalet': 4
})

obj.alpha # 1
obj['alpha'] # 1
obj.get('beta') # 2

del obj['alpha'] # TypeError
obj.alpha = 2 # TypeError

new_obj = update(obj, alpha=10)

new_obj is not obj # True
new_obj.get('alpha') == 10 # True

第三方attr模块提供了此功能。

编辑:python 3.7已经通过@dataclass在stdlib中采用了这个想法。

$ pip install attrs
$ python
>>> @attr.s(frozen=True)
... class C(object):
...     x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):
   ...
attr.exceptions.FrozenInstanceError: can't set attribute

Attr通过覆盖__setattr__来实现冻结类,根据文档,Attr在每次实例化时都有轻微的性能影响。

如果您习惯使用类作为数据类型,attr可能特别有用,因为它为您处理样板文件(但没有任何魔力)。特别地,它为你编写了9个dunder (__X__)方法(除非你关闭其中任何一个),包括repr, init, hash和所有比较函数。

Attr还为__slots__提供了一个帮助器。