虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:
class Immutable(tuple):
def __new__(cls, a, b):
return tuple.__new__(cls, (a, b))
@property
def a(self):
return self[0]
@property
def b(self):
return self[1]
def __str__(self):
return "<Immutable {0}, {1}>".format(self.a, self.b)
def __setattr__(self, *ignored):
raise NotImplementedError
def __delattr__(self, *ignored):
raise NotImplementedError
但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。
这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?
(只能在python3中工作的答案是可以接受的)。
更新:
从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。
使用冻结的数据类
对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。
它看起来是这样的:
from dataclasses import dataclass
@dataclass(frozen=True)
class Immutable:
a: Any
b: Any
由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。
不使用命名元组的原因
在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:
from collections import namedtuple
ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])
obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)
obj1 == obj2 # will be True
如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。
这种方式不停止对象。__setattr__从工作,但我仍然发现它有用:
class A(object):
def __new__(cls, children, *args, **kwargs):
self = super(A, cls).__new__(cls)
self._frozen = False # allow mutation from here to end of __init__
# other stuff you need to do in __new__ goes here
return self
def __init__(self, *args, **kwargs):
super(A, self).__init__()
self._frozen = True # prevent future mutation
def __setattr__(self, name, value):
# need to special case setting _frozen.
if name != '_frozen' and self._frozen:
raise TypeError('Instances are immutable.')
else:
super(A, self).__setattr__(name, value)
def __delattr__(self, name):
if self._frozen:
raise TypeError('Instances are immutable.')
else:
super(A, self).__delattr__(name)
你可能需要根据用例重写更多的东西(比如__setitem__)。
您可以覆盖setattr,仍然使用init来设置变量。你可以使用超类setattr。这是代码。
class Immutable:
__slots__ = ('a','b')
def __init__(self, a , b):
super().__setattr__('a',a)
super().__setattr__('b',b)
def __str__(self):
return "".format(self.a, self.b)
def __setattr__(self, *ignored):
raise NotImplementedError
def __delattr__(self, *ignored):
raise NotImplementedError
第三方attr模块提供了此功能。
编辑:python 3.7已经通过@dataclass在stdlib中采用了这个想法。
$ pip install attrs
$ python
>>> @attr.s(frozen=True)
... class C(object):
... x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):
...
attr.exceptions.FrozenInstanceError: can't set attribute
Attr通过覆盖__setattr__来实现冻结类,根据文档,Attr在每次实例化时都有轻微的性能影响。
如果您习惯使用类作为数据类型,attr可能特别有用,因为它为您处理样板文件(但没有任何魔力)。特别地,它为你编写了9个dunder (__X__)方法(除非你关闭其中任何一个),包括repr, init, hash和所有比较函数。
Attr还为__slots__提供了一个帮助器。
另一个想法是完全不允许__setattr__而使用object。构造函数中的__setattr__:
class Point(object):
def __init__(self, x, y):
object.__setattr__(self, "x", x)
object.__setattr__(self, "y", y)
def __setattr__(self, *args):
raise TypeError
def __delattr__(self, *args):
raise TypeError
当然你可以用object。__setattr__(p, "x", 3)来修改一个Point实例p,但您的原始实现遭受同样的问题(尝试tuple。__setattr__(i, "x", 42)在一个不可变实例)。
您可以在原始实现中应用相同的技巧:去掉__getitem__(),并在属性函数中使用tuple.__getitem__()。