虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

使用冻结的数据类

对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。

它看起来是这样的:

from dataclasses import dataclass

@dataclass(frozen=True)
class Immutable:
    a: Any
    b: Any

由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。

不使用命名元组的原因

在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:

from collections import namedtuple

ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])

obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)

obj1 == obj2  # will be True

如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。

其他回答

这里有一个优雅的解决方案:

class Immutable(object):
    def __setattr__(self, key, value):
        if not hasattr(self, key):
            super().__setattr__(key, value)
        else:
            raise RuntimeError("Can't modify immutable object's attribute: {}".format(key))

从这个类继承,在构造函数中初始化字段,就完成了所有设置。

我找到了一种方法,不用子类化tuple, namedtuple等。你所需要做的就是在初始化后禁用setattr和delattr(如果你想让一个集合成为不可变的,也要禁用setitem和delitem):

def __init__(self, *args, **kwargs):
    # something here

    self.lock()

其中lock可以是这样的:

@classmethod
def lock(cls):
    def raiser(*a):
        raise TypeError('this instance is immutable')

    cls.__setattr__ = raiser
    cls.__delattr__ = raiser
    if hasattr(cls, '__setitem__'):
        cls.__setitem__ = raiser
        cls.__delitem__ = raiser

你可以用这个方法创建类Immutable,并像我展示的那样使用它。

如果你不想在每个init中都写self.lock(),你可以用元类自动实现:

class ImmutableType(type):
    @classmethod
    def change_init(mcs, original_init_method):
        def __new_init__(self, *args, **kwargs):
            if callable(original_init_method):
                original_init_method(self, *args, **kwargs)

            cls = self.__class__

            def raiser(*a):
                raise TypeError('this instance is immutable')

            cls.__setattr__ = raiser
            cls.__delattr__ = raiser
            if hasattr(cls, '__setitem__'):
                cls.__setitem__ = raiser
                cls.__delitem__ = raiser

        return __new_init__

    def __new__(mcs, name, parents, kwargs):
        kwargs['__init__'] = mcs.change_init(kwargs.get('__init__'))
        return type.__new__(mcs, name, parents, kwargs)


class Immutable(metaclass=ImmutableType):
    pass

Test

class SomeImmutableClass(Immutable):
    def __init__(self, some_value: int):
        self.important_attr = some_value

    def some_method(self):
        return 2 * self.important_attr


ins = SomeImmutableClass(3)
print(ins.some_method())  # 6
ins.important_attr += 1  # TypeError
ins.another_attr = 2  # TypeError

如果您对具有行为的对象感兴趣,那么namedtuple几乎是您的解决方案。

正如namedtuple文档底部所描述的,您可以从namedtuple派生自己的类;然后,你可以添加你想要的行为。

例如(代码直接取自文档):

class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

for p in Point(3, 4), Point(14, 5/7):
    print(p)

这将导致:

Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018

这种方法适用于Python 3和Python 2.7(在IronPython上也进行了测试)。 唯一的缺点是继承树有点奇怪;但这不是你经常玩的东西。

另一个想法是完全不允许__setattr__而使用object。构造函数中的__setattr__:

class Point(object):
    def __init__(self, x, y):
        object.__setattr__(self, "x", x)
        object.__setattr__(self, "y", y)
    def __setattr__(self, *args):
        raise TypeError
    def __delattr__(self, *args):
        raise TypeError

当然你可以用object。__setattr__(p, "x", 3)来修改一个Point实例p,但您的原始实现遭受同样的问题(尝试tuple。__setattr__(i, "x", 42)在一个不可变实例)。

您可以在原始实现中应用相同的技巧:去掉__getitem__(),并在属性函数中使用tuple.__getitem__()。

你可以在init的最后一条语句中重写setAttr。那么你可以构建,但不能改变。显然,你仍然可以用usint对象重写。但在实践中,大多数语言都有某种形式的反射,因此不可变始终是一个有漏洞的抽象。不可变性更多的是防止客户端意外地违反对象的契约。我使用:

=============================

最初提供的解决方案是不正确的,这是基于使用这里的解决方案的评论而更新的

原来的解决方案是错误的,这是一种有趣的方式,所以它被包括在底部。

===============================

class ImmutablePair(object):

    __initialised = False # a class level variable that should always stay false.
    def __init__(self, a, b):
        try :
            self.a = a
            self.b = b
        finally:
            self.__initialised = True #an instance level variable

    def __setattr__(self, key, value):
        if self.__initialised:
            self._raise_error()
        else :
            super(ImmutablePair, self).__setattr__(key, value)

    def _raise_error(self, *args, **kw):
        raise NotImplementedError("Attempted To Modify Immutable Object")

if __name__ == "__main__":

    immutable_object = ImmutablePair(1,2)

    print immutable_object.a
    print immutable_object.b

    try :
        immutable_object.a = 3
    except Exception as e:
        print e

    print immutable_object.a
    print immutable_object.b

输出:

1
2
Attempted To Modify Immutable Object
1
2

======================================

最初的实现:

评论中指出,这实际上是行不通的,因为它阻止了在重写类setattr方法时创建多个对象,这意味着不能作为self创建第二个对象。A =将在第二次初始化时失败。

class ImmutablePair(object):

    def __init__(self, a, b):
        self.a = a
        self.b = b
        ImmutablePair.__setattr__ = self._raise_error

    def _raise_error(self, *args, **kw):
        raise NotImplementedError("Attempted To Modify Immutable Object")