虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

我使用了与Alex相同的想法:一个元类和一个“init marker”,但结合重写__setattr__:

>>> from abc import ABCMeta
>>> _INIT_MARKER = '_@_in_init_@_'
>>> class _ImmutableMeta(ABCMeta):
... 
...     """Meta class to construct Immutable."""
... 
...     def __call__(cls, *args, **kwds):
...         obj = cls.__new__(cls, *args, **kwds)
...         object.__setattr__(obj, _INIT_MARKER, True)
...         cls.__init__(obj, *args, **kwds)
...         object.__delattr__(obj, _INIT_MARKER)
...         return obj
...
>>> def _setattr(self, name, value):
...     if hasattr(self, _INIT_MARKER):
...         object.__setattr__(self, name, value)
...     else:
...         raise AttributeError("Instance of '%s' is immutable."
...                              % self.__class__.__name__)
...
>>> def _delattr(self, name):
...     raise AttributeError("Instance of '%s' is immutable."
...                          % self.__class__.__name__)
...
>>> _im_dict = {
...     '__doc__': "Mix-in class for immutable objects.",
...     '__copy__': lambda self: self,   # self is immutable, so just return it
...     '__setattr__': _setattr,
...     '__delattr__': _delattr}
...
>>> Immutable = _ImmutableMeta('Immutable', (), _im_dict)

注意:我直接调用元类,以使它在Python 2中都能工作。X和3.x。

>>> class T1(Immutable):
... 
...     def __init__(self, x=1, y=2):
...         self.x = x
...         self.y = y
...
>>> t1 = T1(y=8)
>>> t1.x, t1.y
(1, 8)
>>> t1.x = 7
AttributeError: Instance of 'T1' is immutable.

它也适用于插槽…:

>>> class T2(Immutable):
... 
...     __slots__ = 's1', 's2'
... 
...     def __init__(self, s1, s2):
...         self.s1 = s1
...         self.s2 = s2
...
>>> t2 = T2('abc', 'xyz')
>>> t2.s1, t2.s2
('abc', 'xyz')
>>> t2.s1 += 'd'
AttributeError: Instance of 'T2' is immutable.

... 和多重继承:

>>> class T3(T1, T2):
... 
...     def __init__(self, x, y, s1, s2):
...         T1.__init__(self, x, y)
...         T2.__init__(self, s1, s2)
...
>>> t3 = T3(12, 4, 'a', 'b')
>>> t3.x, t3.y, t3.s1, t3.s2
(12, 4, 'a', 'b')
>>> t3.y -= 3
AttributeError: Instance of 'T3' is immutable.

但是请注意,可变属性仍然是可变的:

>>> t3 = T3(12, [4, 7], 'a', 'b')
>>> t3.y.append(5)
>>> t3.y
[4, 7, 5]

其他回答

第三方attr模块提供了此功能。

编辑:python 3.7已经通过@dataclass在stdlib中采用了这个想法。

$ pip install attrs
$ python
>>> @attr.s(frozen=True)
... class C(object):
...     x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):
   ...
attr.exceptions.FrozenInstanceError: can't set attribute

Attr通过覆盖__setattr__来实现冻结类,根据文档,Attr在每次实例化时都有轻微的性能影响。

如果您习惯使用类作为数据类型,attr可能特别有用,因为它为您处理样板文件(但没有任何魔力)。特别地,它为你编写了9个dunder (__X__)方法(除非你关闭其中任何一个),包括repr, init, hash和所有比较函数。

Attr还为__slots__提供了一个帮助器。

所以,我在写python 3的相关内容:

I)借助数据类装饰器并设置frozen=True。 我们可以在python中创建不可变对象。

为此需要从data classes lib导入data class,并需要设置frozen=True

ex.

从数据类导入数据类

@dataclass(frozen=True)
class Location:
    name: str
    longitude: float = 0.0
    latitude: float = 0.0

o/p:

>>> l = Location("Delhi", 112.345, 234.788)
>>> l.name
'Delhi'
>>> l.longitude
112.345
>>> l.latitude
234.788
>>> l.name = "Kolkata"
dataclasses.FrozenInstanceError: cannot assign to field 'name'
>>> 

来源:https://realpython.com/python-data-classes/

最简单的方法是使用__slots__:

class A(object):
    __slots__ = []

A的实例现在是不可变的,因为您不能在它们上设置任何属性。

如果你想让类实例包含数据,你可以将this和derived from tuple结合起来:

from operator import itemgetter
class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    x = property(itemgetter(0))
    y = property(itemgetter(1))

p = Point(2, 3)
p.x
# 2
p.y
# 3

编辑:如果你想摆脱索引,你可以重写__getitem__():

class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    @property
    def x(self):
        return tuple.__getitem__(self, 0)
    @property
    def y(self):
        return tuple.__getitem__(self, 1)
    def __getitem__(self, item):
        raise TypeError

注意,不能使用operator。在这种情况下,属性的itemgetter,因为这将依赖于Point.__getitem__()而不是tuple.__getitem__()。此外,这不会阻止使用元组。__getitem__(p, 0),但我很难想象这应该如何构成一个问题。

我不认为创建不可变对象的“正确”方法是编写C扩展。Python通常依赖于库实现者和库用户是成年人,而不是真正强制执行接口,接口应该在文档中清楚地说明。这就是为什么我不认为通过调用object.__setattr__()来规避被重写的__setattr__()是一个问题的可能性。如果有人这么做,风险自负。

我刚才需要这个,并决定为它做一个Python包。最初的版本现在在PyPI上:

$ pip install immutable

使用方法:

>>> from immutable import ImmutableFactory
>>> MyImmutable = ImmutableFactory.create(prop1=1, prop2=2, prop3=3)
>>> MyImmutable.prop1
1

完整的文档在这里:https://github.com/theengineear/immutable

希望它有帮助,它包装了一个namedtuple,但使实例化更简单。

就像字典一样

我有一个开源库,在那里我以函数的方式做事情,所以在不可变对象中移动数据是有帮助的。但是,我不希望必须转换我的数据对象以便客户机与它们交互。所以,我想到了这个-它给你一个字典一样的对象,这是不可变的+一些帮助方法。

这要归功于Sven Marnach对限制属性更新和删除的基本执行的回答。

import json 
# ^^ optional - If you don't care if it prints like a dict
# then rip this and __str__ and __repr__ out

class Immutable(object):

    def __init__(self, **kwargs):
        """Sets all values once given
        whatever is passed in kwargs
        """
        for k,v in kwargs.items():
            object.__setattr__(self, k, v)

    def __setattr__(self, *args):
        """Disables setting attributes via
        item.prop = val or item['prop'] = val
        """
        raise TypeError('Immutable objects cannot have properties set after init')

    def __delattr__(self, *args):
        """Disables deleting properties"""
        raise TypeError('Immutable objects cannot have properties deleted')

    def __getitem__(self, item):
        """Allows for dict like access of properties
        val = item['prop']
        """
        return self.__dict__[item]

    def __repr__(self):
        """Print to repl in a dict like fashion"""
        return self.pprint()

    def __str__(self):
        """Convert to a str in a dict like fashion"""
        return self.pprint()

    def __eq__(self, other):
        """Supports equality operator
        immutable({'a': 2}) == immutable({'a': 2})"""
        if other is None:
            return False
        return self.dict() == other.dict()

    def keys(self):
        """Paired with __getitem__ supports **unpacking
        new = { **item, **other }
        """
        return self.__dict__.keys()

    def get(self, *args, **kwargs):
        """Allows for dict like property access
        item.get('prop')
        """
        return self.__dict__.get(*args, **kwargs)

    def pprint(self):
        """Helper method used for printing that
        formats in a dict like way
        """
        return json.dumps(self,
            default=lambda o: o.__dict__,
            sort_keys=True,
            indent=4)

    def dict(self):
        """Helper method for getting the raw dict value
        of the immutable object"""
        return self.__dict__

辅助方法

def update(obj, **kwargs):
    """Returns a new instance of the given object with
    all key/val in kwargs set on it
    """
    return immutable({
        **obj,
        **kwargs
    })

def immutable(obj):
    return Immutable(**obj)

例子

obj = immutable({
    'alpha': 1,
    'beta': 2,
    'dalet': 4
})

obj.alpha # 1
obj['alpha'] # 1
obj.get('beta') # 2

del obj['alpha'] # TypeError
obj.alpha = 2 # TypeError

new_obj = update(obj, alpha=10)

new_obj is not obj # True
new_obj.get('alpha') == 10 # True