虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

您可以覆盖setattr,仍然使用init来设置变量。你可以使用超类setattr。这是代码。

class Immutable:
    __slots__ = ('a','b')
    def __init__(self, a , b):
        super().__setattr__('a',a)
        super().__setattr__('b',b)

    def __str__(self):
        return "".format(self.a, self.b)

    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

其他回答

下面的基本解决方案针对以下场景:

__init__()可以像往常一样访问属性。 在此之后,对象仅冻结属性更改:

其思想是覆盖__setattr__方法,并在每次对象冻结状态改变时替换其实现。

因此,我们需要一些方法(_freeze)来存储这两个实现,并在请求时在它们之间切换。

这个机制可以在用户类内部实现,也可以从一个特殊的freeze类继承,如下所示:

class Freezer:
    def _freeze(self, do_freeze=True):
        def raise_sa(*args):            
            raise AttributeError("Attributes are frozen and can not be changed!")
        super().__setattr__('_active_setattr', (super().__setattr__, raise_sa)[do_freeze])

    def __setattr__(self, key, value):        
        return self._active_setattr(key, value)

class A(Freezer):    
    def __init__(self):
        self._freeze(False)
        self.x = 10
        self._freeze()

如果您对具有行为的对象感兴趣,那么namedtuple几乎是您的解决方案。

正如namedtuple文档底部所描述的,您可以从namedtuple派生自己的类;然后,你可以添加你想要的行为。

例如(代码直接取自文档):

class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

for p in Point(3, 4), Point(14, 5/7):
    print(p)

这将导致:

Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018

这种方法适用于Python 3和Python 2.7(在IronPython上也进行了测试)。 唯一的缺点是继承树有点奇怪;但这不是你经常玩的东西。

除了其他优秀的答案之外,我喜欢为python 3.4(或者可能是3.3)添加一个方法。这个答案建立在之前对这个问题的几个答案的基础上。

在python 3.4中,可以使用不带设置符的属性来创建不可修改的类成员。(在早期版本中,可以不使用setter为属性赋值。)

class A:
    __slots__=['_A__a']
    def __init__(self, aValue):
      self.__a=aValue
    @property
    def a(self):
        return self.__a

你可以这样使用它:

instance=A("constant")
print (instance.a)

它会输出constant

而是调用实例。A =10会导致:

AttributeError: can't set attribute

解释:不带设置符的属性是python 3.4(我认为是3.3)的最新特性。如果您尝试给这样的属性赋值,则会引发Error。 使用插槽,我将成员变量限制为__A_a(即__a)。

问题:赋值给_aa仍然是可能的(instance. _aa =2)。但是如果你给一个私有变量赋值,那是你自己的错…

然而,这个答案不鼓励使用__slots__。使用其他方法来阻止属性创建可能更可取。

..如何在C中“正确地”做这件事?

你可以使用Cython为Python创建一个扩展类型:

cdef class Immutable:
    cdef readonly object a, b
    cdef object __weakref__ # enable weak referencing support

    def __init__(self, a, b):
        self.a, self.b = a, b

它既适用于Python 2。X和3。

测试

# compile on-the-fly
import pyximport; pyximport.install() # $ pip install cython
from immutable import Immutable

o = Immutable(1, 2)
assert o.a == 1, str(o.a)
assert o.b == 2

try: o.a = 3
except AttributeError:
    pass
else:
    assert 0, 'attribute must be readonly'

try: o[1]
except TypeError:
    pass
else:
    assert 0, 'indexing must not be supported'

try: o.c = 1
except AttributeError:
    pass
else:
    assert 0, 'no new attributes are allowed'

o = Immutable('a', [])
assert o.a == 'a'
assert o.b == []

o.b.append(3) # attribute may contain mutable object
assert o.b == [3]

try: o.c
except AttributeError:
    pass
else:
    assert 0, 'no c attribute'

o = Immutable(b=3,a=1)
assert o.a == 1 and o.b == 3

try: del o.b
except AttributeError:
    pass
else:
    assert 0, "can't delete attribute"

d = dict(b=3, a=1)
o = Immutable(**d)
assert o.a == d['a'] and o.b == d['b']

o = Immutable(1,b=3)
assert o.a == 1 and o.b == 3

try: object.__setattr__(o, 'a', 1)
except AttributeError:
    pass
else:
    assert 0, 'attributes are readonly'

try: object.__setattr__(o, 'c', 1)
except AttributeError:
    pass
else:
    assert 0, 'no new attributes'

try: Immutable(1,c=3)
except TypeError:
    pass
else:
    assert 0, 'accept only a,b keywords'

for kwd in [dict(a=1), dict(b=2)]:
    try: Immutable(**kwd)
    except TypeError:
        pass
    else:
        assert 0, 'Immutable requires exactly 2 arguments'

如果你不介意索引支持,那么@Sven Marnach建议的collections.namedtuple是更可取的:

Immutable = collections.namedtuple("Immutable", "a b")

从Python 3.7开始,你可以在你的类中使用@dataclass装饰器,它将像结构体一样是不可变的!不过,它可能会也可能不会将__hash__()方法添加到类中。引用:

hash() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a hash() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer’s intent, the existence and behavior of eq(), and the values of the eq and frozen flags in the dataclass() decorator. By default, dataclass() will not implicitly add a hash() method unless it is safe to do so. Neither will it add or change an existing explicitly defined hash() method. Setting the class attribute hash = None has a specific meaning to Python, as described in the hash() documentation. If hash() is not explicit defined, or if it is set to None, then dataclass() may add an implicit hash() method. Although not recommended, you can force dataclass() to create a hash() method with unsafe_hash=True. This might be the case if your class is logically immutable but can nonetheless be mutated. This is a specialized use case and should be considered carefully.

下面是上面链接的文档中的例子:

@dataclass
class InventoryItem:
    '''Class for keeping track of an item in inventory.'''
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand