虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

下面的基本解决方案针对以下场景:

__init__()可以像往常一样访问属性。 在此之后,对象仅冻结属性更改:

其思想是覆盖__setattr__方法,并在每次对象冻结状态改变时替换其实现。

因此,我们需要一些方法(_freeze)来存储这两个实现,并在请求时在它们之间切换。

这个机制可以在用户类内部实现,也可以从一个特殊的freeze类继承,如下所示:

class Freezer:
    def _freeze(self, do_freeze=True):
        def raise_sa(*args):            
            raise AttributeError("Attributes are frozen and can not be changed!")
        super().__setattr__('_active_setattr', (super().__setattr__, raise_sa)[do_freeze])

    def __setattr__(self, key, value):        
        return self._active_setattr(key, value)

class A(Freezer):    
    def __init__(self):
        self._freeze(False)
        self.x = 10
        self._freeze()

其他回答

另一种方法是创建一个使实例不可变的包装器。

class Immutable(object):

    def __init__(self, wrapped):
        super(Immutable, self).__init__()
        object.__setattr__(self, '_wrapped', wrapped)

    def __getattribute__(self, item):
        return object.__getattribute__(self, '_wrapped').__getattribute__(item)

    def __setattr__(self, key, value):
        raise ImmutableError('Object {0} is immutable.'.format(self._wrapped))

    __delattr__ = __setattr__

    def __iter__(self):
        return object.__getattribute__(self, '_wrapped').__iter__()

    def next(self):
        return object.__getattribute__(self, '_wrapped').next()

    def __getitem__(self, item):
        return object.__getattribute__(self, '_wrapped').__getitem__(item)

immutable_instance = Immutable(my_instance)

这在只有一些实例必须是不可变的情况下很有用(比如函数调用的默认参数)。

也可以用于不可变工厂,如:

@classmethod
def immutable_factory(cls, *args, **kwargs):
    return Immutable(cls.__init__(*args, **kwargs))

也保护对象。__setattr__,但由于Python的动态特性,可能会被其他技巧所绊倒。

如果您对具有行为的对象感兴趣,那么namedtuple几乎是您的解决方案。

正如namedtuple文档底部所描述的,您可以从namedtuple派生自己的类;然后,你可以添加你想要的行为。

例如(代码直接取自文档):

class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

for p in Point(3, 4), Point(14, 5/7):
    print(p)

这将导致:

Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018

这种方法适用于Python 3和Python 2.7(在IronPython上也进行了测试)。 唯一的缺点是继承树有点奇怪;但这不是你经常玩的东西。

我不认为这是完全可能的,除非使用一个元组或namedtuple。无论如何,如果你重写了__setattr__(),用户总是可以通过直接调用object.__setattr__()来绕过它。任何依赖__setattr__的解决方案都保证不起作用。

以下是不使用某种元组可以得到的最接近的结果:

class Immutable:
    __slots__ = ['a', 'b']
    def __init__(self, a, b):
        object.__setattr__(self, 'a', a)
        object.__setattr__(self, 'b', b)
    def __setattr__(self, *ignored):
        raise NotImplementedError
    __delattr__ = __setattr__

但如果你足够努力,它就会破裂:

>>> t = Immutable(1, 2)
>>> t.a
1
>>> object.__setattr__(t, 'a', 2)
>>> t.a
2

但Sven对namedtuple的使用确实是不可变的。

更新

由于这个问题已经更新为询问如何在C中正确地做这件事,下面是我关于如何在Cython中正确地做这件事的答案:

第一个immutable.pyx:

cdef class Immutable:
    cdef object _a, _b

    def __init__(self, a, b):
        self._a = a
        self._b = b

    property a:
        def __get__(self):
            return self._a

    property b:
        def __get__(self):
            return self._b

    def __repr__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)

和一个setup.py来编译它(使用命令setup.py build_ext——inplace:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("immutable", ["immutable.pyx"])]

setup(
  name = 'Immutable object',
  cmdclass = {'build_ext': build_ext},
  ext_modules = ext_modules
)

然后试试吧:

>>> from immutable import Immutable
>>> p = Immutable(2, 3)
>>> p
<Immutable 2, 3>
>>> p.a = 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: attribute 'a' of 'immutable.Immutable' objects is not writable
>>> object.__setattr__(p, 'a', 1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: attribute 'a' of 'immutable.Immutable' objects is not writable
>>> p.a, p.b
(2, 3)
>>>      

最简单的方法是使用__slots__:

class A(object):
    __slots__ = []

A的实例现在是不可变的,因为您不能在它们上设置任何属性。

如果你想让类实例包含数据,你可以将this和derived from tuple结合起来:

from operator import itemgetter
class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    x = property(itemgetter(0))
    y = property(itemgetter(1))

p = Point(2, 3)
p.x
# 2
p.y
# 3

编辑:如果你想摆脱索引,你可以重写__getitem__():

class Point(tuple):
    __slots__ = []
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    @property
    def x(self):
        return tuple.__getitem__(self, 0)
    @property
    def y(self):
        return tuple.__getitem__(self, 1)
    def __getitem__(self, item):
        raise TypeError

注意,不能使用operator。在这种情况下,属性的itemgetter,因为这将依赖于Point.__getitem__()而不是tuple.__getitem__()。此外,这不会阻止使用元组。__getitem__(p, 0),但我很难想象这应该如何构成一个问题。

我不认为创建不可变对象的“正确”方法是编写C扩展。Python通常依赖于库实现者和库用户是成年人,而不是真正强制执行接口,接口应该在文档中清楚地说明。这就是为什么我不认为通过调用object.__setattr__()来规避被重写的__setattr__()是一个问题的可能性。如果有人这么做,风险自负。

我刚刚想到的另一个解决方案是:获得与原始代码相同行为的最简单方法是

Immutable = collections.namedtuple("Immutable", ["a", "b"])

它并没有解决属性可以通过[0]等访问的问题,但至少它相当简短,并提供了与pickle和copy兼容的额外优势。

namedtuple创建了一个类似于我在这个答案中描述的类型,即从tuple派生并使用__slots__。它在Python 2.6或更高版本中可用。