我知道我可以实现这样一个均方根误差函数:
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
如果这个rmse函数是在某个库中实现的,可能是在scipy或scikit-learn中,我在寻找什么?
我知道我可以实现这样一个均方根误差函数:
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
如果这个rmse函数是在某个库中实现的,可能是在scipy或scikit-learn中,我在寻找什么?
当前回答
这个可能更快?:
n = len(predictions)
rmse = np.linalg.norm(predictions - targets) / np.sqrt(n)
其他回答
这个可能更快?:
n = len(predictions)
rmse = np.linalg.norm(predictions - targets) / np.sqrt(n)
from sklearn import metrics
import numpy as np
print(np.sqrt(metrics.mean_squared_error(y_test,y_predict)))
from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(y_actual, y_predicted, squared=False)
or
import math
from sklearn.metrics import mean_squared_error
rmse = math.sqrt(mean_squared_error(y_actual, y_predicted))
Kaggle内核中有一个ml_metrics库,无需预安装即可使用,非常轻量级,可以通过pypi访问(使用pip install ml_metrics即可轻松快速安装):
from ml_metrics import rmse
rmse(actual=[0, 1, 2], predicted=[1, 10, 5])
# 5.507570547286102
它有一些其他有趣的指标,这些指标在sklearn中是不可用的,比如mapk。
引用:
https://pypi.org/project/ml_metrics/ https://github.com/benhamner/Metrics/tree/master/Python
或者只使用NumPy函数:
def rmse(y, y_pred):
return np.sqrt(np.mean(np.square(y - y_pred)))
地点:
Y是我的目标 Y_pred是我的预测
注意,由于平方函数,rmse(y, y_pred)==rmse(y_pred, y)。