我知道我可以实现这样一个均方根误差函数:

def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())

如果这个rmse函数是在某个库中实现的,可能是在scipy或scikit-learn中,我在寻找什么?


当前回答

下面是一个示例代码,计算两种多边形文件格式PLY之间的RMSE。它同时使用ml_metrics库和np. linalgg .norm:

import sys
import SimpleITK as sitk
from pyntcloud import PyntCloud as pc
import numpy as np
from ml_metrics import rmse

if len(sys.argv) < 3 or sys.argv[1] == "-h" or sys.argv[1] == "--help":
    print("Usage: compute-rmse.py <input1.ply> <input2.ply>")
    sys.exit(1)

def verify_rmse(a, b):
    n = len(a)
    return np.linalg.norm(np.array(b) - np.array(a)) / np.sqrt(n)

def compare(a, b):
    m = pc.from_file(a).points
    n = pc.from_file(b).points
    m = [ tuple(m.x), tuple(m.y), tuple(m.z) ]; m = m[0]
    n = [ tuple(n.x), tuple(n.y), tuple(n.z) ]; n = n[0]
    v1, v2 = verify_rmse(m, n), rmse(m,n)
    print(v1, v2)

compare(sys.argv[1], sys.argv[2])

其他回答

在scikit-learn 0.22.0中,您可以将参数squared=False传递给mean_squared_error()以返回RMSE。

from sklearn.metrics import mean_squared_error
mean_squared_error(y_actual, y_predicted, squared=False)

是的,它是由SKLearn提供的,我们只需要在参数中提到平方= False

from sklearn.metrics import mean_squared_error

mean_squared_error(y_true, y_pred, squared=False)
from sklearn import metrics              
import numpy as np
print(np.sqrt(metrics.mean_squared_error(y_test,y_predict)))

Kaggle内核中有一个ml_metrics库,无需预安装即可使用,非常轻量级,可以通过pypi访问(使用pip install ml_metrics即可轻松快速安装):

from ml_metrics import rmse
rmse(actual=[0, 1, 2], predicted=[1, 10, 5])
# 5.507570547286102

它有一些其他有趣的指标,这些指标在sklearn中是不可用的,比如mapk。

引用:

https://pypi.org/project/ml_metrics/ https://github.com/benhamner/Metrics/tree/master/Python

Sklearn >= 0.22.0

sklearn。metrics有一个带有平方kwarg的mean_squared_error函数(默认为True)。将平方设置为False将返回RMSE。

from sklearn.metrics import mean_squared_error

rms = mean_squared_error(y_actual, y_predicted, squared=False)

Sklearn < 0.22.0

sklearn。Metrics有一个mean_squared_error函数。RMSE就是它返回值的平方根。

from sklearn.metrics import mean_squared_error
from math import sqrt

rms = sqrt(mean_squared_error(y_actual, y_predicted))