这个问题不是为了讨论单例设计模式是否可取、是否是一种反模式,或者是否用于任何宗教战争,而是为了讨论如何以最Python化的方式在Python中最好地实现这种模式。在这个例子中,我定义“最蟒蛇”是指它遵循“最少惊讶的原则”。

我有多个类将成为单类(我的用例是一个记录器,但这并不重要)。当我可以简单地继承或装饰时,我不希望在几个类中添加口香糖。

最佳方法:


方法1:装饰器

def singleton(class_):
    instances = {}
    def getinstance(*args, **kwargs):
        if class_ not in instances:
            instances[class_] = class_(*args, **kwargs)
        return instances[class_]
    return getinstance

@singleton
class MyClass(BaseClass):
    pass

Pros

装饰符的添加方式通常比多重继承更直观。

Cons

虽然使用MyClass()创建的对象将是真正的单例对象,但MyClass本身是一个函数,而不是类,因此不能从中调用类方法x=MyClass();y=MyClass();t=类型(n)();

则x==y但x!=t&y!=吨


方法2:基类

class Singleton(object):
    _instance = None
    def __new__(class_, *args, **kwargs):
        if not isinstance(class_._instance, class_):
            class_._instance = object.__new__(class_, *args, **kwargs)
        return class_._instance

class MyClass(Singleton, BaseClass):
    pass

Pros

这是一门真正的课

Cons

多重继承-嗯__new__是否可以在从第二个基类继承期间被覆盖?一个人必须想得比必要的多。


方法3:元类

class Singleton(type):
    _instances = {}
    def __call__(cls, *args, **kwargs):
        if cls not in cls._instances:
            cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
        return cls._instances[cls]

#Python2
class MyClass(BaseClass):
    __metaclass__ = Singleton

#Python3
class MyClass(BaseClass, metaclass=Singleton):
    pass

Pros

这是一门真正的课自动神奇地覆盖继承为正确的目的使用__metaclass__(并让我意识到)

Cons

有吗?


方法4:decorator返回同名类

def singleton(class_):
    class class_w(class_):
        _instance = None
        def __new__(class_, *args, **kwargs):
            if class_w._instance is None:
                class_w._instance = super(class_w,
                                    class_).__new__(class_,
                                                    *args,
                                                    **kwargs)
                class_w._instance._sealed = False
            return class_w._instance
        def __init__(self, *args, **kwargs):
            if self._sealed:
                return
            super(class_w, self).__init__(*args, **kwargs)
            self._sealed = True
    class_w.__name__ = class_.__name__
    return class_w

@singleton
class MyClass(BaseClass):
    pass

Pros

这是一门真正的课自动神奇地覆盖继承

Cons

创建每个新类是否没有开销?在这里,我们为每个希望成为单例的类创建两个类。虽然这对我来说很好,但我担心这可能无法扩展。当然,对于这种模式的规模是否太容易,还有争议。。。_seled属性的意义是什么无法使用super()在基类上调用同名方法,因为它们将递归。这意味着您不能自定义__new__,也不能对需要调用__init__的类进行子类化。


方法5:模块

模块文件singleton.py

Pros

简单胜于复杂

Cons

未延迟实例化


当前回答

您只需要一个装饰器,具体取决于python版本:


Python 3.2+

实施

from functools import lru_cache

@lru_cache(maxsize=None)
class CustomClass(object):

    def __init__(self, arg):
        print(f"CustomClass initialised with {arg}")
        self.arg = arg

用法

c1 = CustomClass("foo")
c2 = CustomClass("foo")
c3 = CustomClass("bar")

print(c1 == c2)
print(c1 == c3)

输出

>>> CustomClass initialised with foo
>>> CustomClass initialised with bar
>>> True
>>> False

注意foo只打印一次


Python 3.9+

实施:

from functools import cache

@cache
class CustomClass(object):
    ...

其他回答

也许我误解了单例模式,但我的解决方案是简单实用的(Python?)。这段代码实现了两个目标

使Foo的实例可以在任何地方访问(全局)。Foo只能存在一个实例。

这就是代码。

#!/usr/bin/env python3

class Foo:
    me = None

    def __init__(self):
        if Foo.me != None:
            raise Exception('Instance of Foo still exists!')

        Foo.me = self


if __name__ == '__main__':
    Foo()
    Foo()

输出

Traceback (most recent call last):
  File "./x.py", line 15, in <module>
    Foo()
  File "./x.py", line 8, in __init__
    raise Exception('Instance of Foo still exists!')
Exception: Instance of Foo still exists!

如果要将实例用作属性,可以使用元类。例如

class SingletonMeta(type):
    def __init__(cls, *args, **kwargs):
        super().__init__(*args, **kwargs)
        cls._instance = None
        cls._locker = threading.Lock()

    @property
    def instance(self, *args, **kwargs):
        if self._instance is None:
            with self._locker:
                if self._instance is None:
                    self._instance = self(*args, **kwargs)
        return self._instance


class MyClass(metaclass=SingletonMeta):
    def __init__(self):
        # init here
        pass


# get the instance
my_class_instance = MyClass.instance

我不记得我在哪里找到了这个解决方案,但从我的非Python专家的角度来看,我发现它是最“优雅”的:

class SomeSingleton(dict):
    __instance__ = None
    def __new__(cls, *args,**kwargs):
        if SomeSingleton.__instance__ is None:
            SomeSingleton.__instance__ = dict.__new__(cls)
        return SomeSingleton.__instance__

    def __init__(self):
        pass

    def some_func(self,arg):
        pass

我为什么喜欢这个?没有修饰符,没有元类,没有多重继承。。。如果你决定不再让它成为单身汉,就删除__new__方法。由于我刚接触Python(以及OOP),我希望有人能告诉我为什么这是一种可怕的方法?

好吧,除了同意Pythonic关于模块级全局的一般建议之外,这又如何呢

def singleton(class_):
    class class_w(class_):
        _instance = None
        def __new__(class2, *args, **kwargs):
            if class_w._instance is None:
                class_w._instance = super(class_w, class2).__new__(class2, *args, **kwargs)
                class_w._instance._sealed = False
            return class_w._instance
        def __init__(self, *args, **kwargs):
            if self._sealed:
                return
            super(class_w, self).__init__(*args, **kwargs)
            self._sealed = True
    class_w.__name__ = class_.__name__
    return class_w

@singleton
class MyClass(object):
    def __init__(self, text):
        print text
    @classmethod
    def name(class_):
        print class_.__name__

x = MyClass(111)
x.name()
y = MyClass(222)
print id(x) == id(y)

输出为:

111     # the __init__ is called only on the 1st time
MyClass # the __name__ is preserved
True    # this is actually the same instance

如果想要拥有同一类的多个实例,但只有当args或kwargs不同时,才可以使用第三方python包Handy Decorator(包装饰器)。前任。如果您有一个处理串行通信的类,并且要创建一个实例,您希望将串行端口作为参数发送,那么使用传统的方法是行不通的如果参数不同,可以使用上面提到的修饰符创建类的多个实例。对于相同的参数,decorator将返回已创建的相同实例。

>>> from decorators import singleton
>>>
>>> @singleton
... class A:
...     def __init__(self, *args, **kwargs):
...         pass
...
>>>
>>> a = A(name='Siddhesh')
>>> b = A(name='Siddhesh', lname='Sathe')
>>> c = A(name='Siddhesh', lname='Sathe')
>>> a is b  # has to be different
False
>>> b is c  # has to be same
True
>>>