我一直在为一个投资组合管理工具开发一个内部网站。有很多文本数据,公司名称等。我对一些搜索引擎的能力印象深刻,它们可以非常快速地回答“你的意思是:xxxx”。
我需要能够智能地接受用户的查询,并不仅响应原始搜索结果,而且还响应“您的意思是?”当有一个极有可能的替代答案等
我正在开发ASP。NET (VB -别跟我过不去!)]
更新: 好吧,在没有数百万“付费用户”的情况下,我该如何模仿这种模式?
为每个“已知”或“正确”的术语生成拼写错误并执行查找? 还有其他更优雅的方法吗?
我一直在为一个投资组合管理工具开发一个内部网站。有很多文本数据,公司名称等。我对一些搜索引擎的能力印象深刻,它们可以非常快速地回答“你的意思是:xxxx”。
我需要能够智能地接受用户的查询,并不仅响应原始搜索结果,而且还响应“您的意思是?”当有一个极有可能的替代答案等
我正在开发ASP。NET (VB -别跟我过不去!)]
更新: 好吧,在没有数百万“付费用户”的情况下,我该如何模仿这种模式?
为每个“已知”或“正确”的术语生成拼写错误并执行查找? 还有其他更优雅的方法吗?
当前回答
我猜…它可以
寻找词语 如果没有找到,使用一些算法来尝试“猜测”这个词。
可能是来自人工智能的东西,比如Hopfield网络或反向传播网络,或者其他“识别指纹”,恢复损坏的数据,或者Davide已经提到的拼写纠正……
其他回答
几年前我在这方面看到过一些东西,所以可能已经改变了,但显然他们是通过分析相同用户在短时间内提交非常相似的查询的日志开始的,并根据用户如何纠正自己使用机器学习。
最简单的方法是动态规划。
这是一种从信息检索中借来的算法,在现代生物信息学中大量使用,以查看两个基因序列有多相似。
最优解采用动态规划和递归。
这是一个已经解决的问题,有很多解决方案。在你找到一些开源代码之前,一直在你的周围打转。
我的猜测是,他们使用了Levenshtein距离算法和他们收集的大量关于正在运行的搜索数据的组合。他们可以提取一组与输入的搜索字符串的Levenshtein距离最短的搜索,然后选择结果最多的搜索。
嗯…我认为谷歌使用他们庞大的数据语料库(互联网)来做一些严肃的NLP(自然语言处理)。
例如,他们拥有来自整个互联网的大量数据,以至于他们可以计算出三个单词序列出现的次数(称为三元组)。因此,如果他们看到一个句子:“pink frugr concert”,他们可以看到它的点击率很少,然后在语料库中找到最有可能的“pink * concert”。
他们显然只是做了Davide Gualano所说的一种变化,所以一定要阅读那个链接。谷歌当然使用它所知道的所有网页作为一个语料库,这使得它的算法特别有效。
以下是直接来自来源的解释(几乎)
搜索101 !
在分钟 22:03
值得一看!
基本上,根据谷歌前CTO Douglas Merrill的说法,它是这样的:
1)你在谷歌里写了一个(拼错的)单词
2)你找不到你想要的(不要点击任何结果)
3)你意识到你拼错了这个词,所以你在搜索框里重写了这个词。
4)你找到你想要的(你点击第一个链接)
这个模式乘以数百万次,显示了什么是最常见的拼写错误,什么是最“常见”的更正。
这样谷歌几乎可以立即提供每种语言的拼写纠正。
这也意味着如果一夜之间每个人都开始把night拼成“nigth”,谷歌会建议用这个词来代替。
EDIT
道格拉斯将其描述为“统计机器学习”。
他们知道谁更正了查询,因为他们知道哪个查询来自哪个用户(使用cookie)
如果用户执行查询,只有10%的用户点击了结果,而90%的用户返回并输入了另一个查询(带有更正的单词),这一次90%的用户点击了结果,那么他们知道他们已经找到了更正。
它们还可以知道这些是否是两个不同的“相关”查询,因为它们拥有它们所显示的所有链接的信息。
此外,他们现在将上下文纳入拼写检查,因此他们甚至可以根据上下文建议不同的单词。
请看谷歌wave (@ 44m06 s)的演示,它展示了如何考虑上下文来自动纠正拼写。
这里将解释自然语言处理是如何工作的。
最后,这里有一个很棒的演示,可以添加自动机器翻译(@ 1h 12m 47s)到混合。
我已经在视频中添加了分钟和秒的锚,可以直接跳到内容,如果它们不起作用,可以尝试重新加载页面或手动滚动到标记处。