我想从一个巨大的集合(1亿条记录)中获得一个随机记录。

最快最有效的方法是什么?

数据已经在那里,没有字段可以生成随机数并获得随机行。


当前回答

我对php的解决方案:

/**
 * Get random docs from Mongo
 * @param $collection
 * @param $where
 * @param $fields
 * @param $limit
 * @author happy-code
 * @url happy-code.com
 */
private function _mongodb_get_random (MongoCollection $collection, $where = array(), $fields = array(), $limit = false) {

    // Total docs
    $count = $collection->find($where, $fields)->count();

    if (!$limit) {
        // Get all docs
        $limit = $count;
    }

    $data = array();
    for( $i = 0; $i < $limit; $i++ ) {

        // Skip documents
        $skip = rand(0, ($count-1) );
        if ($skip !== 0) {
            $doc = $collection->find($where, $fields)->skip($skip)->limit(1)->getNext();
        } else {
            $doc = $collection->find($where, $fields)->limit(1)->getNext();
        }

        if (is_array($doc)) {
            // Catch document
            $data[ $doc['_id']->{'$id'} ] = $doc;
            // Ignore current document when making the next iteration
            $where['_id']['$nin'][] = $doc['_id'];
        }

        // Every iteration catch document and decrease in the total number of document
        $count--;

    }

    return $data;
}

其他回答

下面的方法比mongo烹饪书解决方案稍慢(在每个文档上添加一个随机键),但是返回分布更均匀的随机文档。与跳过(随机)解决方案相比,它的分布稍微不那么均匀,但在删除文档时要快得多,而且更安全。

function draw(collection, query) {
    // query: mongodb query object (optional)
    var query = query || { };
    query['random'] = { $lte: Math.random() };
    var cur = collection.find(query).sort({ rand: -1 });
    if (! cur.hasNext()) {
        delete query.random;
        cur = collection.find(query).sort({ rand: -1 });
    }
    var doc = cur.next();
    doc.random = Math.random();
    collection.update({ _id: doc._id }, doc);
    return doc;
}

它还要求您添加一个随机的“random”字段到您的文档中,所以不要忘记在创建它们时添加这个:您可能需要初始化您的集合,如Geoffrey所示

function addRandom(collection) { 
    collection.find().forEach(function (obj) {
        obj.random = Math.random();
        collection.save(obj);
    }); 
} 
db.eval(addRandom, db.things);

基准测试结果

该方法比(ceejayoz)的skip()方法快得多,并且比Michael报告的“cookbook”方法生成更均匀的随机文档:

对于包含1,000,000个元素的集合:

这种方法在我的机器上花费的时间不到1毫秒 skip()方法平均花费180毫秒

cookbook方法将导致大量文档永远不会被选中,因为它们的随机数对它们不利。

该方法将在一段时间内均匀地挑选所有元素。 在我的基准测试中,它只比食谱方法慢了30%。 随机性并不是100%完美的,但是它已经很好了(如果有必要的话还可以进行改进)

这个配方并不完美——正如其他人所指出的那样,完美的解决方案将是内置功能。 然而,对于许多目的来说,这应该是一个很好的折衷方案。

我最简单的解决办法是……

db.coll.find()
    .limit(1)
    .skip(Math.floor(Math.random() * 500))
    .next()

你至少有500件收藏品

对所有记录进行计数,生成一个0到计数之间的随机数,然后执行:

db.yourCollection.find().limit(-1).skip(yourRandomNumber).next()

使用Python (pymongo),聚合函数也可以工作。

collection.aggregate([{'$sample': {'size': sample_size }}])

这种方法比对随机数(例如collection.find([random_int]))运行查询要快得多。对于大型收藏来说尤其如此。

如果没有数据,这是很困难的。_id字段是什么?它们是mongodb对象id吗?如果是这样,你可以得到最大值和最小值:

lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;

然后,如果你假设id是均匀分布的(但它们不是,但至少这是一个开始):

unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)

V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();

randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);