我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
当前回答
我对php的解决方案:
/**
* Get random docs from Mongo
* @param $collection
* @param $where
* @param $fields
* @param $limit
* @author happy-code
* @url happy-code.com
*/
private function _mongodb_get_random (MongoCollection $collection, $where = array(), $fields = array(), $limit = false) {
// Total docs
$count = $collection->find($where, $fields)->count();
if (!$limit) {
// Get all docs
$limit = $count;
}
$data = array();
for( $i = 0; $i < $limit; $i++ ) {
// Skip documents
$skip = rand(0, ($count-1) );
if ($skip !== 0) {
$doc = $collection->find($where, $fields)->skip($skip)->limit(1)->getNext();
} else {
$doc = $collection->find($where, $fields)->limit(1)->getNext();
}
if (is_array($doc)) {
// Catch document
$data[ $doc['_id']->{'$id'} ] = $doc;
// Ignore current document when making the next iteration
$where['_id']['$nin'][] = $doc['_id'];
}
// Every iteration catch document and decrease in the total number of document
$count--;
}
return $data;
}
其他回答
如果没有数据,这是很困难的。_id字段是什么?它们是mongodb对象id吗?如果是这样,你可以得到最大值和最小值:
lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;
然后,如果你假设id是均匀分布的(但它们不是,但至少这是一个开始):
unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)
V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();
randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);
下面是一种使用_id的默认ObjectId值和一些数学和逻辑的方法。
// Get the "min" and "max" timestamp values from the _id in the collection and the
// diff between.
// 4-bytes from a hex string is 8 characters
var min = parseInt(db.collection.find()
.sort({ "_id": 1 }).limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
max = parseInt(db.collection.find()
.sort({ "_id": -1 })limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
diff = max - min;
// Get a random value from diff and divide/multiply be 1000 for The "_id" precision:
var random = Math.floor(Math.floor(Math.random(diff)*diff)/1000)*1000;
// Use "random" in the range and pad the hex string to a valid ObjectId
var _id = new ObjectId(((min + random)/1000).toString(16) + "0000000000000000")
// Then query for the single document:
var randomDoc = db.collection.find({ "_id": { "$gte": _id } })
.sort({ "_id": 1 }).limit(1).toArray()[0];
这是shell表示法的一般逻辑,很容易适应。
所以在点上:
查找集合中的最小和最大主键值 生成一个位于这些文档的时间戳之间的随机数。 将随机数与最小值相加,然后找到大于或等于该值的第一个文档。
这使用了从“十六进制”的时间戳值中“填充”来形成有效的ObjectId值,因为这就是我们正在寻找的。使用整数作为_id值本质上更简单,但在点中基本思想相同。
使用Map/Reduce,您当然可以获得一个随机记录,只是不一定非常有效,这取决于您最终使用的过滤集合的大小。
我已经用5万个文档测试了这个方法(过滤器将其减少到大约3万个),它在Intel i3、16GB ram和SATA3 HDD上执行大约400毫秒……
db.toc_content.mapReduce(
/* map function */
function() { emit( 1, this._id ); },
/* reduce function */
function(k,v) {
var r = Math.floor((Math.random()*v.length));
return v[r];
},
/* options */
{
out: { inline: 1 },
/* Filter the collection to "A"ctive documents */
query: { status: "A" }
}
);
Map函数简单地创建一个数组,其中包含所有与查询匹配的文档的id。在我的例子中,我测试了5万个可能的文档中的大约3万个。
Reduce函数只是在数组中从0到项数(-1)之间选择一个随机整数,然后从数组中返回该_id。
400ms听起来是一段很长的时间,而且确实如此,如果您有5000万条记录而不是5万条记录,这可能会增加开销,以至于在多用户情况下无法使用。
MongoDB在核心中包含这个功能有一个悬而未决的问题…https://jira.mongodb.org/browse/SERVER-533
如果将这种“随机”选择构建到索引查找中,而不是将id收集到一个数组中然后选择一个,这将非常有帮助。(去投票吧!)
我对php的解决方案:
/**
* Get random docs from Mongo
* @param $collection
* @param $where
* @param $fields
* @param $limit
* @author happy-code
* @url happy-code.com
*/
private function _mongodb_get_random (MongoCollection $collection, $where = array(), $fields = array(), $limit = false) {
// Total docs
$count = $collection->find($where, $fields)->count();
if (!$limit) {
// Get all docs
$limit = $count;
}
$data = array();
for( $i = 0; $i < $limit; $i++ ) {
// Skip documents
$skip = rand(0, ($count-1) );
if ($skip !== 0) {
$doc = $collection->find($where, $fields)->skip($skip)->limit(1)->getNext();
} else {
$doc = $collection->find($where, $fields)->limit(1)->getNext();
}
if (is_array($doc)) {
// Catch document
$data[ $doc['_id']->{'$id'} ] = $doc;
// Ignore current document when making the next iteration
$where['_id']['$nin'][] = $doc['_id'];
}
// Every iteration catch document and decrease in the total number of document
$count--;
}
return $data;
}
如果您使用的是mongoid(文档到对象的包装器),您可以执行以下操作 Ruby。(假设你的模型是User)
User.all.to_a[rand(User.count)]
在我的。irbrc,我有
def rando klass
klass.all.to_a[rand(klass.count)]
end
所以在rails控制台,我可以做,例如,
rando User
rando Article
从任何集合中随机获取文件。