我认为这应该很简单,但我尝试了一些想法,但没有一个奏效:
last_row = len(DF)
DF = DF.drop(DF.index[last_row]) #<-- fail!
我试过使用负号,但这也会导致错误。我肯定还是误解了一些基本的东西。
我认为这应该很简单,但我尝试了一些想法,但没有一个奏效:
last_row = len(DF)
DF = DF.drop(DF.index[last_row]) #<-- fail!
我试过使用负号,但这也会导致错误。我肯定还是误解了一些基本的东西。
当前回答
由于Python中的索引定位是基于0的,因此在索引中对应len(DF)的位置实际上不会有一个元素。你需要last_row = len(DF) - 1:
In [49]: dfrm
Out[49]:
A B C
0 0.120064 0.785538 0.465853
1 0.431655 0.436866 0.640136
2 0.445904 0.311565 0.934073
3 0.981609 0.695210 0.911697
4 0.008632 0.629269 0.226454
5 0.577577 0.467475 0.510031
6 0.580909 0.232846 0.271254
7 0.696596 0.362825 0.556433
8 0.738912 0.932779 0.029723
9 0.834706 0.002989 0.333436
[10 rows x 3 columns]
In [50]: dfrm.drop(dfrm.index[len(dfrm)-1])
Out[50]:
A B C
0 0.120064 0.785538 0.465853
1 0.431655 0.436866 0.640136
2 0.445904 0.311565 0.934073
3 0.981609 0.695210 0.911697
4 0.008632 0.629269 0.226454
5 0.577577 0.467475 0.510031
6 0.580909 0.232846 0.271254
7 0.696596 0.362825 0.556433
8 0.738912 0.932779 0.029723
[9 rows x 3 columns]
然而,只写DF[:-1]要简单得多。
其他回答
由于Python中的索引定位是基于0的,因此在索引中对应len(DF)的位置实际上不会有一个元素。你需要last_row = len(DF) - 1:
In [49]: dfrm
Out[49]:
A B C
0 0.120064 0.785538 0.465853
1 0.431655 0.436866 0.640136
2 0.445904 0.311565 0.934073
3 0.981609 0.695210 0.911697
4 0.008632 0.629269 0.226454
5 0.577577 0.467475 0.510031
6 0.580909 0.232846 0.271254
7 0.696596 0.362825 0.556433
8 0.738912 0.932779 0.029723
9 0.834706 0.002989 0.333436
[10 rows x 3 columns]
In [50]: dfrm.drop(dfrm.index[len(dfrm)-1])
Out[50]:
A B C
0 0.120064 0.785538 0.465853
1 0.431655 0.436866 0.640136
2 0.445904 0.311565 0.934073
3 0.981609 0.695210 0.911697
4 0.008632 0.629269 0.226454
5 0.577577 0.467475 0.510031
6 0.580909 0.232846 0.271254
7 0.696596 0.362825 0.556433
8 0.738912 0.932779 0.029723
[9 rows x 3 columns]
然而,只写DF[:-1]要简单得多。
令人惊讶的是居然没人提这个问题:
# To remove last n rows
df.head(-n)
# To remove first n rows
df.tail(-n)
在1000行的DataFrame上运行速度测试表明,切片和头部/尾部比使用drop快6倍:
>>> %timeit df[:-1]
125 µs ± 132 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit df.head(-1)
129 µs ± 1.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit df.drop(df.tail(1).index)
751 µs ± 20.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
DF[:-n]
其中n是最后要删除的行数。
删除最后一行:
DF = DF[:-1]
删除最后n行:
df.drop(df.tail(n).index,inplace=True) # drop last n rows
通过同样的方式,可以删除前n行:
df.drop(df.head(n).index,inplace=True) # drop first n rows
DF。drop((label =None, axis=0, index = last_row)
作为的函数:
DataFrame。drop(label =None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
从行或列中删除指定的标签。
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html