我认为这应该很简单,但我尝试了一些想法,但没有一个奏效:

last_row = len(DF)
DF = DF.drop(DF.index[last_row])  #<-- fail!

我试过使用负号,但这也会导致错误。我肯定还是误解了一些基本的东西。


当前回答

stats = pd.read_csv("C:\\py\\programs\\second pandas\\ex.csv")

统计数据输出:

       A            B          C
0   0.120064    0.785538    0.465853
1   0.431655    0.436866    0.640136
2   0.445904    0.311565    0.934073
3   0.981609    0.695210    0.911697
4   0.008632    0.629269    0.226454
5   0.577577    0.467475    0.510031
6   0.580909    0.232846    0.271254
7   0.696596    0.362825    0.556433
8   0.738912    0.932779    0.029723
9   0.834706    0.002989    0.333436

只需使用skipfooter=1

Skipfooter: int,默认为0 文件底部要跳过的行数

stats_2 = pd.read_csv("C:\\py\\programs\\second pandas\\ex.csv", skipfooter=1, engine='python')

stats_2的输出

       A          B            C
0   0.120064    0.785538    0.465853
1   0.431655    0.436866    0.640136
2   0.445904    0.311565    0.934073
3   0.981609    0.695210    0.911697
4   0.008632    0.629269    0.226454
5   0.577577    0.467475    0.510031
6   0.580909    0.232846    0.271254
7   0.696596    0.362825    0.556433
8   0.738912    0.932779    0.029723

其他回答

令人惊讶的是居然没人提这个问题:

# To remove last n rows
df.head(-n)

# To remove first n rows
df.tail(-n)

在1000行的DataFrame上运行速度测试表明,切片和头部/尾部比使用drop快6倍:

>>> %timeit df[:-1]
125 µs ± 132 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

>>> %timeit df.head(-1)
129 µs ± 1.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

>>> %timeit df.drop(df.tail(1).index)
751 µs ± 20.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

对于具有多索引的更复杂的dataframe(例如“Stock”和“Date”),并且希望删除每个股票的最后一行,而不仅仅是最后一只股票的最后一行,那么解决方案如下:

# To remove last n rows
df = df.groupby(level='Stock').apply(lambda x: x.head(-1)).reset_index(0, drop=True)

# To remove first n rows
df = df.groupby(level='Stock').apply(lambda x: x.tail(-1)).reset_index(0, drop=True)

由于groupby()向Multi-Index添加了一个额外的级别,我们只需使用reset_index()将其放在末尾。结果df与操作前保持相同类型的Multi-Index。

DF。drop((label =None, axis=0, index = last_row)

作为的函数:

DataFrame。drop(label =None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

从行或列中删除指定的标签。

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html

我发现的最好的解决方案是不(不一定?)完全复制

df.drop(df.index[-1], inplace=True)

当然,你可以简单地省略inplace=True来创建一个新的数据框架,你也可以通过简单地截取df的切片轻松地删除最后N行。指数(df。index[-N:]删除最后N行)。因此,这种方法不仅简洁,而且非常灵活。

使用索引

df.iloc[:-1,:]

这就是iloc存在的原因。你也可以用head或tail。