今天,我在看一些c++代码(别人写的),发现了这一部分:
double someValue = ...
if (someValue < std::numeric_limits<double>::epsilon() &&
someValue > -std::numeric_limits<double>::epsilon()) {
someValue = 0.0;
}
我在想这到底说得通不合理。
epsilon()的文档说:
该函数返回1与可[用双精度符号]表示的大于1的最小值之间的差值。
这是否也适用于0,即()的最小值大于0?或者有没有0到0 +之间的数可以用双精度数表示?
如果不是,那么比较是不是等同于someValue == 0.0?
使用IEEE浮点,在最小的非零正数和最小的非零负数之间,存在两个值:正零和负零。测试一个值是否在最小的非零值之间等价于测试与零相等;然而,赋值可能会产生影响,因为它会将负0变为正0。
It would be conceivable that a floating-point format might have three values between the smallest finite positive and negative values: positive infinitesimal, unsigned zero, and negative infinitesimal. I am not familiar with any floating-point formats that in fact work that way, but such a behavior would be perfectly reasonable and arguably better than that of IEEE (perhaps not enough better to be worth adding extra hardware to support it, but mathematically 1/(1/INF), 1/(-1/INF), and 1/(1-1) should represent three distinct cases illustrating three different zeroes). I don't know whether any C standard would mandate that signed infinitesimals, if they exist, would have to compare equal to zero. If they do not, code like the above could usefully ensure that e.g. dividing a number repeatedly by two would eventually yield zero rather than being stuck on "infinitesimal".
假设我们正在使用适合16位寄存器的玩具浮点数。有一个符号位,一个5位指数和一个10位尾数。
这个浮点数的值是尾数,解释为二进制十进制值,乘以2的指数次方。
在1附近,指数等于0。尾数中最小的数字是1024的1分之一。
接近1/2的指数是- 1,所以尾数最小的部分是一半大。如果是5位指数,它可以达到负16,此时尾数最小的部分值为3200万分之一。在- 16指数处,这个值大约是32k的1分之1,比我们上面计算的1附近更接近于0 !
这是一个玩具式的浮点模型,它不能反映真正的浮点系统的所有怪癖,但是它反映小于的值的能力与真正的浮点值相当相似。