我试图使用Python提取包含在这个PDF文件中的文本。

我正在使用PyPDF2包(版本1.27.2),并有以下脚本:

import PyPDF2

with open("sample.pdf", "rb") as pdf_file:
    read_pdf = PyPDF2.PdfFileReader(pdf_file)
    number_of_pages = read_pdf.getNumPages()
    page = read_pdf.pages[0]
    page_content = page.extractText()
print(page_content)

当我运行代码时,我得到以下输出,这与PDF文档中包含的输出不同:

 ! " # $ % # $ % &% $ &' ( ) * % + , - % . / 0 1 ' * 2 3% 4
5
 ' % 1 $ # 2 6 % 3/ % 7 / ) ) / 8 % &) / 2 6 % 8 # 3" % 3" * % 31 3/ 9 # &)
%

如何提取PDF文档中的文本?


当前回答

如果想要从表格中提取文本,我发现tabula很容易实现,准确且快速:

获取熊猫数据框架:

import tabula

df = tabula.read_pdf('your.pdf')

df

默认情况下,它忽略表之外的页面内容。到目前为止,我只在单页、单表文件上进行了测试,但是有一些kwarg可以容纳多页和/或多表。

安装通过:

pip install tabula-py
# or
conda install -c conda-forge tabula-py 

在直接的文本提取方面,请参阅: https://stackoverflow.com/a/63190886/9249533

其他回答

Camelot似乎是在Python中从pdf中提取表的一个相当强大的解决方案。

乍一看,它似乎实现了几乎和CreekGeek建议的tabura -py包一样准确的提取,CreekGeek在可靠性方面已经超过了任何其他发布的解决方案,但它应该是更可配置的。此外,它有自己的精度指示器(results.parsing_report),以及强大的调试功能。

Camelot和Tabula都将结果作为Pandas的dataframe提供,因此之后很容易调整表。

pip install camelot-py

(不要与卡梅洛特的包装混淆。)

import camelot

df_list = []
results = camelot.read_pdf("file.pdf", ...)
for table in results:
    print(table.parsing_report)
    df_list.append(results[0].df)

它还可以输出结果为CSV, JSON, HTML或Excel。

卡梅洛特的到来是以牺牲许多属地为代价的。

NB :由于我的输入非常复杂,有许多不同的表,我最终使用Camelot和Tabula,根据表,以达到最好的结果。

你可以使用pytessaract和OpenCV简单地做到这一点。参考下面的代码。您可以从本文中获得更多详细信息。

import os
from PIL import Image
from pdf2image import convert_from_path
import pytesseract

filePath = ‘021-DO-YOU-WONDER-ABOUT-RAIN-SNOW-SLEET-AND-HAIL-Free-Childrens-Book-By-Monkey-Pen.pdf’
doc = convert_from_path(filePath)

path, fileName = os.path.split(filePath)
fileBaseName, fileExtension = os.path.splitext(fileName)

for page_number, page_data in enumerate(doc):
txt = pytesseract.image_to_string(page_data).encode(“utf-8”)
print(“Page # {} — {}”.format(str(page_number),txt))

你可以从这里下载tika-app-xxx.jar(最新)。

然后将这个.jar文件放在python脚本文件的同一文件夹中。

然后在脚本中插入如下代码:

import os
import os.path

tika_dir=os.path.join(os.path.dirname(__file__),'<tika-app-xxx>.jar')

def extract_pdf(source_pdf:str,target_txt:str):
    os.system('java -jar '+tika_dir+' -t {} > {}'.format(source_pdf,target_txt))

该方法的优点:

更少的依赖。单个.jar文件比python包更容易管理。

开始支持。位置source_pdf可以是任何类型文档的目录。(.doc, .html, .odt等)

最新的。tika-app.jar始终先于相关版本的tika python包发布。

稳定。它比PyPDF更加稳定和维护良好(由Apache提供支持)。

劣势:

一个无头小丑是必要的。

我正在添加代码来实现这一点: 这对我来说很好:

# This works in python 3
# required python packages
# tabula-py==1.0.0
# PyPDF2==1.26.0
# Pillow==4.0.0
# pdfminer.six==20170720

import os
import shutil
import warnings
from io import StringIO

import requests
import tabula
from PIL import Image
from PyPDF2 import PdfFileWriter, PdfFileReader
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.pdfpage import PDFPage

warnings.filterwarnings("ignore")


def download_file(url):
    local_filename = url.split('/')[-1]
    local_filename = local_filename.replace("%20", "_")
    r = requests.get(url, stream=True)
    print(r)
    with open(local_filename, 'wb') as f:
        shutil.copyfileobj(r.raw, f)

    return local_filename


class PDFExtractor():
    def __init__(self, url):
        self.url = url

    # Downloading File in local
    def break_pdf(self, filename, start_page=-1, end_page=-1):
        pdf_reader = PdfFileReader(open(filename, "rb"))
        # Reading each pdf one by one
        total_pages = pdf_reader.numPages
        if start_page == -1:
            start_page = 0
        elif start_page < 1 or start_page > total_pages:
            return "Start Page Selection Is Wrong"
        else:
            start_page = start_page - 1

        if end_page == -1:
            end_page = total_pages
        elif end_page < 1 or end_page > total_pages - 1:
            return "End Page Selection Is Wrong"
        else:
            end_page = end_page

        for i in range(start_page, end_page):
            output = PdfFileWriter()
            output.addPage(pdf_reader.getPage(i))
            with open(str(i + 1) + "_" + filename, "wb") as outputStream:
                output.write(outputStream)

    def extract_text_algo_1(self, file):
        pdf_reader = PdfFileReader(open(file, 'rb'))
        # creating a page object
        pageObj = pdf_reader.getPage(0)

        # extracting extract_text from page
        text = pageObj.extractText()
        text = text.replace("\n", "").replace("\t", "")
        return text

    def extract_text_algo_2(self, file):
        pdfResourceManager = PDFResourceManager()
        retstr = StringIO()
        la_params = LAParams()
        device = TextConverter(pdfResourceManager, retstr, codec='utf-8', laparams=la_params)
        fp = open(file, 'rb')
        interpreter = PDFPageInterpreter(pdfResourceManager, device)
        password = ""
        max_pages = 0
        caching = True
        page_num = set()

        for page in PDFPage.get_pages(fp, page_num, maxpages=max_pages, password=password, caching=caching,
                                      check_extractable=True):
            interpreter.process_page(page)

        text = retstr.getvalue()
        text = text.replace("\t", "").replace("\n", "")

        fp.close()
        device.close()
        retstr.close()
        return text

    def extract_text(self, file):
        text1 = self.extract_text_algo_1(file)
        text2 = self.extract_text_algo_2(file)

        if len(text2) > len(str(text1)):
            return text2
        else:
            return text1

    def extarct_table(self, file):

        # Read pdf into DataFrame
        try:
            df = tabula.read_pdf(file, output_format="csv")
        except:
            print("Error Reading Table")
            return

        print("\nPrinting Table Content: \n", df)
        print("\nDone Printing Table Content\n")

    def tiff_header_for_CCITT(self, width, height, img_size, CCITT_group=4):
        tiff_header_struct = '<' + '2s' + 'h' + 'l' + 'h' + 'hhll' * 8 + 'h'
        return struct.pack(tiff_header_struct,
                           b'II',  # Byte order indication: Little indian
                           42,  # Version number (always 42)
                           8,  # Offset to first IFD
                           8,  # Number of tags in IFD
                           256, 4, 1, width,  # ImageWidth, LONG, 1, width
                           257, 4, 1, height,  # ImageLength, LONG, 1, lenght
                           258, 3, 1, 1,  # BitsPerSample, SHORT, 1, 1
                           259, 3, 1, CCITT_group,  # Compression, SHORT, 1, 4 = CCITT Group 4 fax encoding
                           262, 3, 1, 0,  # Threshholding, SHORT, 1, 0 = WhiteIsZero
                           273, 4, 1, struct.calcsize(tiff_header_struct),  # StripOffsets, LONG, 1, len of header
                           278, 4, 1, height,  # RowsPerStrip, LONG, 1, lenght
                           279, 4, 1, img_size,  # StripByteCounts, LONG, 1, size of extract_image
                           0  # last IFD
                           )

    def extract_image(self, filename):
        number = 1
        pdf_reader = PdfFileReader(open(filename, 'rb'))

        for i in range(0, pdf_reader.numPages):

            page = pdf_reader.getPage(i)

            try:
                xObject = page['/Resources']['/XObject'].getObject()
            except:
                print("No XObject Found")
                return

            for obj in xObject:

                try:

                    if xObject[obj]['/Subtype'] == '/Image':
                        size = (xObject[obj]['/Width'], xObject[obj]['/Height'])
                        data = xObject[obj]._data
                        if xObject[obj]['/ColorSpace'] == '/DeviceRGB':
                            mode = "RGB"
                        else:
                            mode = "P"

                        image_name = filename.split(".")[0] + str(number)

                        print(xObject[obj]['/Filter'])

                        if xObject[obj]['/Filter'] == '/FlateDecode':
                            data = xObject[obj].getData()
                            img = Image.frombytes(mode, size, data)
                            img.save(image_name + "_Flate.png")
                            # save_to_s3(imagename + "_Flate.png")
                            print("Image_Saved")

                            number += 1
                        elif xObject[obj]['/Filter'] == '/DCTDecode':
                            img = open(image_name + "_DCT.jpg", "wb")
                            img.write(data)
                            # save_to_s3(imagename + "_DCT.jpg")
                            img.close()
                            number += 1
                        elif xObject[obj]['/Filter'] == '/JPXDecode':
                            img = open(image_name + "_JPX.jp2", "wb")
                            img.write(data)
                            # save_to_s3(imagename + "_JPX.jp2")
                            img.close()
                            number += 1
                        elif xObject[obj]['/Filter'] == '/CCITTFaxDecode':
                            if xObject[obj]['/DecodeParms']['/K'] == -1:
                                CCITT_group = 4
                            else:
                                CCITT_group = 3
                            width = xObject[obj]['/Width']
                            height = xObject[obj]['/Height']
                            data = xObject[obj]._data  # sorry, getData() does not work for CCITTFaxDecode
                            img_size = len(data)
                            tiff_header = self.tiff_header_for_CCITT(width, height, img_size, CCITT_group)
                            img_name = image_name + '_CCITT.tiff'
                            with open(img_name, 'wb') as img_file:
                                img_file.write(tiff_header + data)

                            # save_to_s3(img_name)
                            number += 1
                except:
                    continue

        return number

    def read_pages(self, start_page=-1, end_page=-1):

        # Downloading file locally
        downloaded_file = download_file(self.url)
        print(downloaded_file)

        # breaking PDF into number of pages in diff pdf files
        self.break_pdf(downloaded_file, start_page, end_page)

        # creating a pdf reader object
        pdf_reader = PdfFileReader(open(downloaded_file, 'rb'))

        # Reading each pdf one by one
        total_pages = pdf_reader.numPages

        if start_page == -1:
            start_page = 0
        elif start_page < 1 or start_page > total_pages:
            return "Start Page Selection Is Wrong"
        else:
            start_page = start_page - 1

        if end_page == -1:
            end_page = total_pages
        elif end_page < 1 or end_page > total_pages - 1:
            return "End Page Selection Is Wrong"
        else:
            end_page = end_page

        for i in range(start_page, end_page):
            # creating a page based filename
            file = str(i + 1) + "_" + downloaded_file

            print("\nStarting to Read Page: ", i + 1, "\n -----------===-------------")

            file_text = self.extract_text(file)
            print(file_text)
            self.extract_image(file)

            self.extarct_table(file)
            os.remove(file)
            print("Stopped Reading Page: ", i + 1, "\n -----------===-------------")

        os.remove(downloaded_file)


# I have tested on these 3 pdf files
# url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Healthcare-January-2017.pdf"
url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Sample_Test.pdf"
# url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Sazerac_FS_2017_06_30%20Annual.pdf"
# creating the instance of class
pdf_extractor = PDFExtractor(url)

# Getting desired data out
pdf_extractor.read_pages(15, 23)

如何从PDF文件中提取文本?

首先要了解的是PDF格式。它有一个用英文编写的公共规范,请参阅ISO 32000-2:2017,并阅读超过700页的PDF 1.7规范。当然,你至少需要阅读维基百科关于PDF的页面

一旦你理解了PDF格式的细节,提取文本或多或少是容易的(但是出现在图形或图像中的文本呢?它的数字1)?不要指望在几周内单独编写一个完美的软件文本提取器....

在Linux上,你也可以使用pdf2text,你可以从你的Python代码中弹出。

一般来说,从PDF文件中提取文本是一个定义不清的问题。对于人类读者来说,一些文本可以由不同的点制成(图形),或者一张照片等等。

谷歌搜索引擎能够从PDF中提取文本,但据传需要超过5亿行的源代码。你有必要的资源(人力和预算)来发展一个竞争对手吗?

一种可能是将PDF打印到一些虚拟打印机(例如使用GhostScript或Firefox),然后使用OCR技术提取文本。

相反,我建议处理生成PDF文件的数据表示,例如原始的LaTeX代码(或Lout代码)或OOXML代码。

在所有情况下,您都需要为至少几个人年的软件开发预算。