我试图使用Python提取包含在这个PDF文件中的文本。

我正在使用PyPDF2包(版本1.27.2),并有以下脚本:

import PyPDF2

with open("sample.pdf", "rb") as pdf_file:
    read_pdf = PyPDF2.PdfFileReader(pdf_file)
    number_of_pages = read_pdf.getNumPages()
    page = read_pdf.pages[0]
    page_content = page.extractText()
print(page_content)

当我运行代码时,我得到以下输出,这与PDF文档中包含的输出不同:

 ! " # $ % # $ % &% $ &' ( ) * % + , - % . / 0 1 ' * 2 3% 4
5
 ' % 1 $ # 2 6 % 3/ % 7 / ) ) / 8 % &) / 2 6 % 8 # 3" % 3" * % 31 3/ 9 # &)
%

如何提取PDF文档中的文本?


当前回答

使用pdfminer.six。这里是文档:https://pdfminersix.readthedocs.io/en/latest/index.html

将pdf转换为文本:

    def pdf_to_text():
        from pdfminer.high_level import extract_text

        text = extract_text('test.pdf')
        print(text)

其他回答

在尝试textract(似乎有太多依赖项)和pypdf2(无法从我测试的pdf中提取文本)和tika(太慢)后,我最终使用xpdf中的pdftotext(正如已经在另一个答案中建议的那样),并直接从python中调用二进制(您可能需要调整路径到pdftotext):

import os, subprocess
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
args = ["/usr/local/bin/pdftotext",
        '-enc',
        'UTF-8',
        "{}/my-pdf.pdf".format(SCRIPT_DIR),
        '-']
res = subprocess.run(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output = res.stdout.decode('utf-8')

有pdftotext,它基本上相同,但这假设pdftotext在/usr/local/bin中,而我在AWS lambda中使用这个,并希望从当前目录使用它。

顺便说一句:要在lambda上使用这个,你需要把二进制文件和依赖项放到libstdc++中。到函数中。我个人需要编译xpdf。由于这方面的说明会让这个答案变得更糟,我把它们放在了我的个人博客上。

我在寻找一个简单的解决方案来使用python 3。X和窗口。textract似乎不支持,这是不幸的,但如果你正在寻找一个简单的解决方案的windows/python 3签出tika包,真的直接阅读pdf。

Tika-Python是绑定到Apache Tika™REST服务的Python,允许在Python社区中本地调用Tika。

from tika import parser # pip install tika

raw = parser.from_file('sample.pdf')
print(raw['content'])

注意,Tika是用Java编写的,因此需要安装Java运行时

PyPDF2确实有效,但结果可能有所不同。我从其结果提取中看到了相当不一致的结果。

reader=PyPDF2.pdf.PdfFileReader(self._path)
eachPageText=[]
for i in range(0,reader.getNumPages()):
    pageText=reader.getPage(i).extractText()
    print(pageText)
    eachPageText.append(pageText)

我正在添加代码来实现这一点: 这对我来说很好:

# This works in python 3
# required python packages
# tabula-py==1.0.0
# PyPDF2==1.26.0
# Pillow==4.0.0
# pdfminer.six==20170720

import os
import shutil
import warnings
from io import StringIO

import requests
import tabula
from PIL import Image
from PyPDF2 import PdfFileWriter, PdfFileReader
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.pdfpage import PDFPage

warnings.filterwarnings("ignore")


def download_file(url):
    local_filename = url.split('/')[-1]
    local_filename = local_filename.replace("%20", "_")
    r = requests.get(url, stream=True)
    print(r)
    with open(local_filename, 'wb') as f:
        shutil.copyfileobj(r.raw, f)

    return local_filename


class PDFExtractor():
    def __init__(self, url):
        self.url = url

    # Downloading File in local
    def break_pdf(self, filename, start_page=-1, end_page=-1):
        pdf_reader = PdfFileReader(open(filename, "rb"))
        # Reading each pdf one by one
        total_pages = pdf_reader.numPages
        if start_page == -1:
            start_page = 0
        elif start_page < 1 or start_page > total_pages:
            return "Start Page Selection Is Wrong"
        else:
            start_page = start_page - 1

        if end_page == -1:
            end_page = total_pages
        elif end_page < 1 or end_page > total_pages - 1:
            return "End Page Selection Is Wrong"
        else:
            end_page = end_page

        for i in range(start_page, end_page):
            output = PdfFileWriter()
            output.addPage(pdf_reader.getPage(i))
            with open(str(i + 1) + "_" + filename, "wb") as outputStream:
                output.write(outputStream)

    def extract_text_algo_1(self, file):
        pdf_reader = PdfFileReader(open(file, 'rb'))
        # creating a page object
        pageObj = pdf_reader.getPage(0)

        # extracting extract_text from page
        text = pageObj.extractText()
        text = text.replace("\n", "").replace("\t", "")
        return text

    def extract_text_algo_2(self, file):
        pdfResourceManager = PDFResourceManager()
        retstr = StringIO()
        la_params = LAParams()
        device = TextConverter(pdfResourceManager, retstr, codec='utf-8', laparams=la_params)
        fp = open(file, 'rb')
        interpreter = PDFPageInterpreter(pdfResourceManager, device)
        password = ""
        max_pages = 0
        caching = True
        page_num = set()

        for page in PDFPage.get_pages(fp, page_num, maxpages=max_pages, password=password, caching=caching,
                                      check_extractable=True):
            interpreter.process_page(page)

        text = retstr.getvalue()
        text = text.replace("\t", "").replace("\n", "")

        fp.close()
        device.close()
        retstr.close()
        return text

    def extract_text(self, file):
        text1 = self.extract_text_algo_1(file)
        text2 = self.extract_text_algo_2(file)

        if len(text2) > len(str(text1)):
            return text2
        else:
            return text1

    def extarct_table(self, file):

        # Read pdf into DataFrame
        try:
            df = tabula.read_pdf(file, output_format="csv")
        except:
            print("Error Reading Table")
            return

        print("\nPrinting Table Content: \n", df)
        print("\nDone Printing Table Content\n")

    def tiff_header_for_CCITT(self, width, height, img_size, CCITT_group=4):
        tiff_header_struct = '<' + '2s' + 'h' + 'l' + 'h' + 'hhll' * 8 + 'h'
        return struct.pack(tiff_header_struct,
                           b'II',  # Byte order indication: Little indian
                           42,  # Version number (always 42)
                           8,  # Offset to first IFD
                           8,  # Number of tags in IFD
                           256, 4, 1, width,  # ImageWidth, LONG, 1, width
                           257, 4, 1, height,  # ImageLength, LONG, 1, lenght
                           258, 3, 1, 1,  # BitsPerSample, SHORT, 1, 1
                           259, 3, 1, CCITT_group,  # Compression, SHORT, 1, 4 = CCITT Group 4 fax encoding
                           262, 3, 1, 0,  # Threshholding, SHORT, 1, 0 = WhiteIsZero
                           273, 4, 1, struct.calcsize(tiff_header_struct),  # StripOffsets, LONG, 1, len of header
                           278, 4, 1, height,  # RowsPerStrip, LONG, 1, lenght
                           279, 4, 1, img_size,  # StripByteCounts, LONG, 1, size of extract_image
                           0  # last IFD
                           )

    def extract_image(self, filename):
        number = 1
        pdf_reader = PdfFileReader(open(filename, 'rb'))

        for i in range(0, pdf_reader.numPages):

            page = pdf_reader.getPage(i)

            try:
                xObject = page['/Resources']['/XObject'].getObject()
            except:
                print("No XObject Found")
                return

            for obj in xObject:

                try:

                    if xObject[obj]['/Subtype'] == '/Image':
                        size = (xObject[obj]['/Width'], xObject[obj]['/Height'])
                        data = xObject[obj]._data
                        if xObject[obj]['/ColorSpace'] == '/DeviceRGB':
                            mode = "RGB"
                        else:
                            mode = "P"

                        image_name = filename.split(".")[0] + str(number)

                        print(xObject[obj]['/Filter'])

                        if xObject[obj]['/Filter'] == '/FlateDecode':
                            data = xObject[obj].getData()
                            img = Image.frombytes(mode, size, data)
                            img.save(image_name + "_Flate.png")
                            # save_to_s3(imagename + "_Flate.png")
                            print("Image_Saved")

                            number += 1
                        elif xObject[obj]['/Filter'] == '/DCTDecode':
                            img = open(image_name + "_DCT.jpg", "wb")
                            img.write(data)
                            # save_to_s3(imagename + "_DCT.jpg")
                            img.close()
                            number += 1
                        elif xObject[obj]['/Filter'] == '/JPXDecode':
                            img = open(image_name + "_JPX.jp2", "wb")
                            img.write(data)
                            # save_to_s3(imagename + "_JPX.jp2")
                            img.close()
                            number += 1
                        elif xObject[obj]['/Filter'] == '/CCITTFaxDecode':
                            if xObject[obj]['/DecodeParms']['/K'] == -1:
                                CCITT_group = 4
                            else:
                                CCITT_group = 3
                            width = xObject[obj]['/Width']
                            height = xObject[obj]['/Height']
                            data = xObject[obj]._data  # sorry, getData() does not work for CCITTFaxDecode
                            img_size = len(data)
                            tiff_header = self.tiff_header_for_CCITT(width, height, img_size, CCITT_group)
                            img_name = image_name + '_CCITT.tiff'
                            with open(img_name, 'wb') as img_file:
                                img_file.write(tiff_header + data)

                            # save_to_s3(img_name)
                            number += 1
                except:
                    continue

        return number

    def read_pages(self, start_page=-1, end_page=-1):

        # Downloading file locally
        downloaded_file = download_file(self.url)
        print(downloaded_file)

        # breaking PDF into number of pages in diff pdf files
        self.break_pdf(downloaded_file, start_page, end_page)

        # creating a pdf reader object
        pdf_reader = PdfFileReader(open(downloaded_file, 'rb'))

        # Reading each pdf one by one
        total_pages = pdf_reader.numPages

        if start_page == -1:
            start_page = 0
        elif start_page < 1 or start_page > total_pages:
            return "Start Page Selection Is Wrong"
        else:
            start_page = start_page - 1

        if end_page == -1:
            end_page = total_pages
        elif end_page < 1 or end_page > total_pages - 1:
            return "End Page Selection Is Wrong"
        else:
            end_page = end_page

        for i in range(start_page, end_page):
            # creating a page based filename
            file = str(i + 1) + "_" + downloaded_file

            print("\nStarting to Read Page: ", i + 1, "\n -----------===-------------")

            file_text = self.extract_text(file)
            print(file_text)
            self.extract_image(file)

            self.extarct_table(file)
            os.remove(file)
            print("Stopped Reading Page: ", i + 1, "\n -----------===-------------")

        os.remove(downloaded_file)


# I have tested on these 3 pdf files
# url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Healthcare-January-2017.pdf"
url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Sample_Test.pdf"
# url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Sazerac_FS_2017_06_30%20Annual.pdf"
# creating the instance of class
pdf_extractor = PDFExtractor(url)

# Getting desired data out
pdf_extractor.read_pages(15, 23)

Pdfplumber是一个更好的从pdf中读取和提取数据的库。它还提供了读取表数据的方法,在经历了大量这样的库之后,pdfplumber最适合我。

请注意,它最适合机器编写的pdf,而不是扫描的pdf。

import pdfplumber
with pdfplumber.open(r'D:\examplepdf.pdf') as pdf:
first_page = pdf.pages[0]
print(first_page.extract_text())