是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?

或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?


当前回答

我试了一下:

from numpy import genfromtxt
genfromtxt(fname = dest_file, dtype = (<whatever options>))

对比:

import csv
import numpy as np
with open(dest_file,'r') as dest_f:
    data_iter = csv.reader(dest_f,
                           delimiter = delimiter,
                           quotechar = '"')
    data = [data for data in data_iter]
data_array = np.asarray(data, dtype = <whatever options>)

对460万行约70列进行了分析,发现NumPy路径花费了2分16秒,csv-list理解方法花费了13秒。

我会推荐csv-list理解方法,因为它很可能依赖于预编译的库,而不是像NumPy那样依赖解释器。我怀疑pandas方法也有类似的解释器开销。

其他回答

In [329]: %time my_data = genfromtxt('one.csv', delimiter=',')
CPU times: user 19.8 s, sys: 4.58 s, total: 24.4 s
Wall time: 24.4 s

In [330]: %time df = pd.read_csv("one.csv", skiprows=20)
CPU times: user 1.06 s, sys: 312 ms, total: 1.38 s
Wall time: 1.38 s

还可以尝试recfromcsv(),它可以猜测数据类型并返回正确格式化的记录数组。

使用numpy.loadtxt

一个非常简单的方法。但它要求所有元素都是float (int等)

import numpy as np 
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)  

您可以使用此代码将CSV文件数据发送到数组中:

import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)

使用numpy.genfromtxt(),将分隔符kwarg设置为逗号:

from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',')