如何检查PyTorch是否使用GPU?nvidia-smi命令可以检测GPU活动,但我想直接从Python脚本中检查它。
当前回答
从实际的角度来看,有一个小题外话:
import torch
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
这个开发人员现在知道是cuda还是cpu。
在使用cuda时,处理模型和张量的方式是不同的。一开始有点奇怪。
import torch
import torch.nn as nn
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
t1 = torch.randn(1,2)
t2 = torch.randn(1,2).to(dev)
print(t1) # tensor([[-0.2678, 1.9252]])
print(t2) # tensor([[ 0.5117, -3.6247]], device='cuda:0')
t1.to(dev)
print(t1) # tensor([[-0.2678, 1.9252]])
print(t1.is_cuda) # False
t1 = t1.to(dev)
print(t1) # tensor([[-0.2678, 1.9252]], device='cuda:0')
print(t1.is_cuda) # True
class M(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(1,2)
def forward(self, x):
x = self.l1(x)
return x
model = M() # not on cuda
model.to(dev) # is on cuda (all parameters)
print(next(model.parameters()).is_cuda) # True
这一切都很棘手,一旦理解它,就可以帮助您快速处理较少的调试。
其他回答
这些函数应该有助于:
>>> import torch
>>> torch.cuda.is_available()
True
>>> torch.cuda.device_count()
1
>>> torch.cuda.current_device()
0
>>> torch.cuda.device(0)
<torch.cuda.device at 0x7efce0b03be0>
>>> torch.cuda.get_device_name(0)
'GeForce GTX 950M'
这告诉我们:
CUDA是可用的,可以在一台设备上使用。 Device 0指GPU GeForce GTX 950M,目前被PyTorch选中。
Query | Command |
---|---|
Does PyTorch see any GPUs? | torch.cuda.is_available() |
Are tensors stored on GPU by default? | torch.rand(10).device |
Set default tensor type to CUDA: | torch.set_default_tensor_type(torch.cuda.FloatTensor) |
Is this tensor a GPU tensor? | my_tensor.is_cuda |
Is this model stored on the GPU? | all(p.is_cuda for p in my_model.parameters()) |
步骤1:导入火炬库
import torch
#步骤2:创建张量
tensor = torch.tensor([5, 6])
#步骤3:查找设备类型
#输出1:在下面的输出中,我们可以得到size(tensor.shape), dimension(tensor.ndim), #和处理张量的设备
tensor, tensor.device, tensor.ndim, tensor.shape
(tensor([5, 6]), device(type='cpu'), 1, torch.Size([2]))
#or
#输出2:在下面,输出我们可以得到的唯一设备类型
tensor.device
device(type='cpu')
#由于我的系统使用cpu处理器“第11代英特尔(R)酷睿(TM) i5-1135G7 @ 2.40GHz 2.42 GHz”
#find,如果张量处理GPU?
print(tensor, torch.cuda.is_available()
# the output will be
tensor([5, 6]) False
#上面的输出是假的,因此它不在gpu上
#快乐编码:)
如果你在这里是因为你的pytorch总是给torch.cuda.is_available() False,那可能是因为你安装的pytorch版本没有GPU支持。(例如:你在笔记本电脑上编码,然后在服务器上测试)。
解决方案是在pytorch下载页面中使用正确的命令卸载并重新安装pytorch。也参考这个pytorch问题。
查询是否有可用的GPU。
torch.cuda.is_available()
如果上面的函数返回False,
你要么没有GPU, 或者没有安装Nvidia驱动程序,所以OS看不到GPU, 或者GPU被环境变量CUDA_VISIBLE_DEVICES隐藏。当CUDA_VISIBLE_DEVICES的值为-1时,将隐藏所有设备。你可以用下面这行代码检查这个值:os.environ['CUDA_VISIBLE_DEVICES']
如果上面的函数返回True,这并不一定意味着你正在使用GPU。在Pytorch中,您可以在创建设备时将张量分配给它们。默认情况下,张量被分配给cpu。要检查张量的分配位置,请执行以下操作:
# assuming that 'a' is a tensor created somewhere else
a.device # returns the device where the tensor is allocated
注意,您不能操作在不同设备中分配的张量。要了解如何将张量分配给GPU,请参见这里:https://pytorch.org/docs/stable/notes/cuda.html
推荐文章
- 如何限制Django模型中数值字段的最大值?
- 访问对象内存地址
- 为什么在Python方法中需要显式地有“self”参数?
- 如何升级Windows 10下的Python安装?
- tqdm在Jupyter笔记本重复打印新的进度条
- 如何在for循环中注释类型?
- 如何替换一个Pandas数据框架的字符串列中的文本?
- 从pandas apply()返回多个列
- 从列中的字符串中删除不需要的部分
- Python只大写第一个字母
- 使用熊猫合并时如何保持索引
- 如何排序两个列表(其中相互引用)在完全相同的方式
- Python中的哈希映射
- 子进程Popen和调用之间的区别是什么(我如何使用它们)?
- 将python 'type'对象转换为字符串