如何检查PyTorch是否使用GPU?nvidia-smi命令可以检测GPU活动,但我想直接从Python脚本中检查它。
当前回答
在GPU上创建一个张量,如下所示:
$ python
>>> import torch
>>> print(torch.rand(3,3).cuda())
不要退出,打开另一个终端,检查python进程是否使用该GPU:
$ nvidia-smi
其他回答
使用下面的代码
import torch
torch.cuda.is_available()
将只显示GPU是否存在并被pytorch检测到。
但是在“任务管理器->性能”中,GPU利用率会非常低。
这意味着你实际上是在使用CPU运行。
解决上述问题的检查和修改:
打开硬件加速GPU设置,重新启动。 在通知区打开NVIDIA控制面板—> Desktop—>显示GPU [注意:如果您新安装了windows,那么您还必须在NVIDIA控制面板中同意这些条款和条件]
这应该有用!
在你开始运行训练循环后,如果你想在终端上手动观察你的程序是否在利用GPU资源,以及利用到什么程度,那么你可以简单地使用watch,如下所示:
$ watch -n 2 nvidia-smi
这将持续更新使用统计每2秒,直到你按ctrl+c
如果你需要更多的GPU统计数据的控制,你可以使用更复杂的nvidia-smi版本——query-gpu=....下面是一个简单的例子:
$ watch -n 3 nvidia-smi --query-gpu=index,gpu_name,memory.total,memory.used,memory.free,temperature.gpu,pstate,utilization.gpu,utilization.memory --format=csv
这将输出统计信息如下:
注意:在——query-gpu=....中,以逗号分隔的查询名之间不能有空格否则,这些值将被忽略,不返回统计信息。
此外,你可以通过以下方法检查PyTorch安装是否正确检测到CUDA安装:
In [13]: import torch
In [14]: torch.cuda.is_available()
Out[14]: True
True状态意味着PyTorch配置正确,并且正在使用GPU,尽管你必须在代码中使用必要的语句移动/放置张量。
如果你想在Python代码中执行此操作,请查看以下模块:
https://github.com/jonsafari/nvidia-ml-py或在pypi中:https://pypi.python.org/pypi/nvidia-ml-py/
在官方网站的入门页面,你可以像这样检查PyTorch的GPU是否可用:
import torch
torch.cuda.is_available()
参考:PyTorch | Get Started
在GPU上创建一个张量,如下所示:
$ python
>>> import torch
>>> print(torch.rand(3,3).cuda())
不要退出,打开另一个终端,检查python进程是否使用该GPU:
$ nvidia-smi
如果你使用的是Linux,我建议安装nvtop https://github.com/Syllo/nvtop
你会得到这样的结果:
推荐文章
- ValueError: numpy。Ndarray大小改变,可能表示二进制不兼容。期望从C头得到88,从PyObject得到80
- Anaconda /conda -安装特定的软件包版本
- 我在哪里调用Keras的BatchNormalization函数?
- 打印测试执行时间并使用py.test锁定缓慢的测试
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 在内存的哪里我的变量存储在C?
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数