如何检查PyTorch是否使用GPU?nvidia-smi命令可以检测GPU活动,但我想直接从Python脚本中检查它。
当前回答
在GPU上创建一个张量,如下所示:
$ python
>>> import torch
>>> print(torch.rand(3,3).cuda())
不要退出,打开另一个终端,检查python进程是否使用该GPU:
$ nvidia-smi
其他回答
在官方网站的入门页面,你可以像这样检查PyTorch的GPU是否可用:
import torch
torch.cuda.is_available()
参考:PyTorch | Get Started
这是可能的
torch.cuda.is_available()
返回True,但在运行时得到以下错误
>>> torch.rand(10).to(device)
MBT建议:
RuntimeError: CUDA error: no kernel image is available for execution on the device
这个链接解释了
... torch.cuda。Is_available只检查你的驱动程序是否与我们在二进制文件中使用的cuda版本兼容。这意味着CUDA 10.1与您的驱动程序是兼容的。但是当你用CUDA计算时,它找不到你的拱门的代码。
由于这里没有提出,我添加了一个使用torch.device的方法,因为这非常方便,在正确的设备上初始化张量时也是如此。
# setting device on GPU if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print()
#Additional Info when using cuda
if device.type == 'cuda':
print(torch.cuda.get_device_name(0))
print('Memory Usage:')
print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
编辑:torch.cuda。Memory_cached已重命名为torch.cuda.memory_reserved。因此,对于旧版本使用memory_cached。
输出:
Using device: cuda
Tesla K80
Memory Usage:
Allocated: 0.3 GB
Cached: 0.6 GB
如上所述,使用设备可以:
将张量移动到相应的设备: torch.rand(10),(设备) 直接在设备上创建一个张量: 火炬。兰特(10,设备=设备)
这使得CPU和GPU之间的切换舒适,而不改变实际的代码。
编辑:
由于有一些问题和困惑的缓存和分配内存,我添加了一些关于它的额外信息:
max_memory_cached(device=None)返回缓存分配器管理的最大GPU内存,单位为字节 鉴于设备。 memory_allocated(device=None)返回给定设备的当前GPU内存使用情况(以字节为单位)。
你可以直接移交一个设备,就像上面提到的那样,或者你可以让它为None,它将使用current_device()。
附加注意:旧的图形卡与Cuda计算能力3.0或更低可能是可见的,但不能被Pytorch使用!感谢hekimgil指出这一点!“发现了GPU0 GeForce GT 750M, cuda能力3.0。PyTorch不再支持这个GPU,因为它太老了。我们支持的cuda最低能力是3.5。”
使用下面的代码
import torch
torch.cuda.is_available()
将只显示GPU是否存在并被pytorch检测到。
但是在“任务管理器->性能”中,GPU利用率会非常低。
这意味着你实际上是在使用CPU运行。
解决上述问题的检查和修改:
打开硬件加速GPU设置,重新启动。 在通知区打开NVIDIA控制面板—> Desktop—>显示GPU [注意:如果您新安装了windows,那么您还必须在NVIDIA控制面板中同意这些条款和条件]
这应该有用!
从实际的角度来看,有一个小题外话:
import torch
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
这个开发人员现在知道是cuda还是cpu。
在使用cuda时,处理模型和张量的方式是不同的。一开始有点奇怪。
import torch
import torch.nn as nn
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
t1 = torch.randn(1,2)
t2 = torch.randn(1,2).to(dev)
print(t1) # tensor([[-0.2678, 1.9252]])
print(t2) # tensor([[ 0.5117, -3.6247]], device='cuda:0')
t1.to(dev)
print(t1) # tensor([[-0.2678, 1.9252]])
print(t1.is_cuda) # False
t1 = t1.to(dev)
print(t1) # tensor([[-0.2678, 1.9252]], device='cuda:0')
print(t1.is_cuda) # True
class M(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(1,2)
def forward(self, x):
x = self.l1(x)
return x
model = M() # not on cuda
model.to(dev) # is on cuda (all parameters)
print(next(model.parameters()).is_cuda) # True
这一切都很棘手,一旦理解它,就可以帮助您快速处理较少的调试。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录