如何检查PyTorch是否使用GPU?nvidia-smi命令可以检测GPU活动,但我想直接从Python脚本中检查它。


当前回答

Query Command
Does PyTorch see any GPUs? torch.cuda.is_available()
Are tensors stored on GPU by default? torch.rand(10).device
Set default tensor type to CUDA: torch.set_default_tensor_type(torch.cuda.FloatTensor)
Is this tensor a GPU tensor? my_tensor.is_cuda
Is this model stored on the GPU? all(p.is_cuda for p in my_model.parameters())

其他回答

由于这里没有提出,我添加了一个使用torch.device的方法,因为这非常方便,在正确的设备上初始化张量时也是如此。

# setting device on GPU if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print()

#Additional Info when using cuda
if device.type == 'cuda':
    print(torch.cuda.get_device_name(0))
    print('Memory Usage:')
    print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
    print('Cached:   ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')

编辑:torch.cuda。Memory_cached已重命名为torch.cuda.memory_reserved。因此,对于旧版本使用memory_cached。

输出:

Using device: cuda

Tesla K80
Memory Usage:
Allocated: 0.3 GB
Cached:    0.6 GB

如上所述,使用设备可以:

将张量移动到相应的设备: torch.rand(10),(设备) 直接在设备上创建一个张量: 火炬。兰特(10,设备=设备)

这使得CPU和GPU之间的切换舒适,而不改变实际的代码。


编辑:

由于有一些问题和困惑的缓存和分配内存,我添加了一些关于它的额外信息:

max_memory_cached(device=None)返回缓存分配器管理的最大GPU内存,单位为字节 鉴于设备。 memory_allocated(device=None)返回给定设备的当前GPU内存使用情况(以字节为单位)。

你可以直接移交一个设备,就像上面提到的那样,或者你可以让它为None,它将使用current_device()。


附加注意:旧的图形卡与Cuda计算能力3.0或更低可能是可见的,但不能被Pytorch使用!感谢hekimgil指出这一点!“发现了GPU0 GeForce GT 750M, cuda能力3.0。PyTorch不再支持这个GPU,因为它太老了。我们支持的cuda最低能力是3.5。”

如果你在这里是因为你的pytorch总是给torch.cuda.is_available() False,那可能是因为你安装的pytorch版本没有GPU支持。(例如:你在笔记本电脑上编码,然后在服务器上测试)。

解决方案是在pytorch下载页面中使用正确的命令卸载并重新安装pytorch。也参考这个pytorch问题。

这是可能的

torch.cuda.is_available()

返回True,但在运行时得到以下错误

>>> torch.rand(10).to(device)

MBT建议:

RuntimeError: CUDA error: no kernel image is available for execution on the device

这个链接解释了

... torch.cuda。Is_available只检查你的驱动程序是否与我们在二进制文件中使用的cuda版本兼容。这意味着CUDA 10.1与您的驱动程序是兼容的。但是当你用CUDA计算时,它找不到你的拱门的代码。

在官方网站的入门页面,你可以像这样检查PyTorch的GPU是否可用:

import torch
torch.cuda.is_available()

参考:PyTorch | Get Started

步骤1:导入火炬库

import torch

#步骤2:创建张量

tensor = torch.tensor([5, 6])

#步骤3:查找设备类型

#输出1:在下面的输出中,我们可以得到size(tensor.shape), dimension(tensor.ndim), #和处理张量的设备

tensor, tensor.device, tensor.ndim, tensor.shape

(tensor([5, 6]), device(type='cpu'), 1, torch.Size([2]))

#or

#输出2:在下面,输出我们可以得到的唯一设备类型

tensor.device

device(type='cpu')

#由于我的系统使用cpu处理器“第11代英特尔(R)酷睿(TM) i5-1135G7 @ 2.40GHz 2.42 GHz”

#find,如果张量处理GPU?

print(tensor, torch.cuda.is_available()

# the output will be

tensor([5, 6]) False 

#上面的输出是假的,因此它不在gpu上

#快乐编码:)