如何检查PyTorch是否使用GPU?nvidia-smi命令可以检测GPU活动,但我想直接从Python脚本中检查它。


当前回答

这些函数应该有助于:

>>> import torch

>>> torch.cuda.is_available()
True

>>> torch.cuda.device_count()
1

>>> torch.cuda.current_device()
0

>>> torch.cuda.device(0)
<torch.cuda.device at 0x7efce0b03be0>

>>> torch.cuda.get_device_name(0)
'GeForce GTX 950M'

这告诉我们:

CUDA是可用的,可以在一台设备上使用。 Device 0指GPU GeForce GTX 950M,目前被PyTorch选中。

其他回答

Query Command
Does PyTorch see any GPUs? torch.cuda.is_available()
Are tensors stored on GPU by default? torch.rand(10).device
Set default tensor type to CUDA: torch.set_default_tensor_type(torch.cuda.FloatTensor)
Is this tensor a GPU tensor? my_tensor.is_cuda
Is this model stored on the GPU? all(p.is_cuda for p in my_model.parameters())

如果你在这里是因为你的pytorch总是给torch.cuda.is_available() False,那可能是因为你安装的pytorch版本没有GPU支持。(例如:你在笔记本电脑上编码,然后在服务器上测试)。

解决方案是在pytorch下载页面中使用正确的命令卸载并重新安装pytorch。也参考这个pytorch问题。

查询是否有可用的GPU。

torch.cuda.is_available()

如果上面的函数返回False,

你要么没有GPU, 或者没有安装Nvidia驱动程序,所以OS看不到GPU, 或者GPU被环境变量CUDA_VISIBLE_DEVICES隐藏。当CUDA_VISIBLE_DEVICES的值为-1时,将隐藏所有设备。你可以用下面这行代码检查这个值:os.environ['CUDA_VISIBLE_DEVICES']

如果上面的函数返回True,这并不一定意味着你正在使用GPU。在Pytorch中,您可以在创建设备时将张量分配给它们。默认情况下,张量被分配给cpu。要检查张量的分配位置,请执行以下操作:

# assuming that 'a' is a tensor created somewhere else
a.device  # returns the device where the tensor is allocated

注意,您不能操作在不同设备中分配的张量。要了解如何将张量分配给GPU,请参见这里:https://pytorch.org/docs/stable/notes/cuda.html

简单地从命令提示符或Linux环境中运行以下命令。

python -c 'import torch; print(torch.cuda.is_available())'

上面应该打印为True

python -c 'import torch; print(torch.rand(2,3).cuda())'

它应该打印以下内容:

tensor([[0.7997, 0.6170, 0.7042], [0.4174, 0.1494, 0.0516]], device='cuda:0')

这是可能的

torch.cuda.is_available()

返回True,但在运行时得到以下错误

>>> torch.rand(10).to(device)

MBT建议:

RuntimeError: CUDA error: no kernel image is available for execution on the device

这个链接解释了

... torch.cuda。Is_available只检查你的驱动程序是否与我们在二进制文件中使用的cuda版本兼容。这意味着CUDA 10.1与您的驱动程序是兼容的。但是当你用CUDA计算时,它找不到你的拱门的代码。