新版Pandas使用以下界面加载Excel文件:
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
但如果我不知道有哪些床单呢?
例如,我正在工作的excel文件,如下表
数据1,数据2…,数据N, foo, bar
但我不知道先验的N。
有没有办法从熊猫的excel文档中获得表的列表?
新版Pandas使用以下界面加载Excel文件:
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
但如果我不知道有哪些床单呢?
例如,我正在工作的excel文件,如下表
数据1,数据2…,数据N, foo, bar
但我不知道先验的N。
有没有办法从熊猫的excel文档中获得表的列表?
当前回答
#It will work for Both '.xls' and '.xlsx' by using pandas
import pandas as pd
excel_Sheet_names = (pd.ExcelFile(excelFilePath)).sheet_names
#for '.xlsx' use only openpyxl
from openpyxl import load_workbook
excel_Sheet_names = (load_workbook(excelFilePath, read_only=True)).sheet_names
其他回答
这是我发现的最快的方法,灵感来自@divingTobi的答案。所有基于xlrd、openpyxl或pandas的答案对我来说都很慢,因为它们都先加载整个文件。
from zipfile import ZipFile
from bs4 import BeautifulSoup # you also need to install "lxml" for the XML parser
with ZipFile(file) as zipped_file:
summary = zipped_file.open(r'xl/workbook.xml').read()
soup = BeautifulSoup(summary, "xml")
sheets = [sheet.get("name") for sheet in soup.find_all("sheet")]
你仍然可以使用ExcelFile类(和sheet_names属性):
xl = pd.ExcelFile('foo.xls')
xl.sheet_names # see all sheet names
xl.parse(sheet_name) # read a specific sheet to DataFrame
更多选项参见文档解析…
import pandas as pd
path = "\\DB\\Expense\\reconcile\\"
file_name = "202209-v01.xlsx"
df = pd.read_excel(path + file_name, None)
print(df)
sheet_names = list(df.keys())
# print last sheet name
print(sheet_names[len(sheet_names)-1])
last_month = df.get(sheet_names[len(sheet_names)-1])
print(last_month)
如果你读excel文件
dfs = pd.ExcelFile('file')
然后使用
dfs.sheet_names
dfs.parse('sheetname')
另一种变体
df = pd.read_excel('file', sheet_name='sheetname')
您应该显式地将第二个参数(sheetname)指定为None。是这样的:
df = pandas.read_excel("/yourPath/FileName.xlsx", None);
"df"都是一个数据帧字典,你可以通过运行这个来验证:
df.keys()
结果是这样的:
[u'201610', u'201601', u'201701', u'201702', u'201703', u'201704', u'201705', u'201706', u'201612', u'fund', u'201603', u'201602', u'201605', u'201607', u'201606', u'201608', u'201512', u'201611', u'201604']
详情请参考熊猫文档:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html