新版Pandas使用以下界面加载Excel文件:

read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

但如果我不知道有哪些床单呢?

例如,我正在工作的excel文件,如下表

数据1,数据2…,数据N, foo, bar

但我不知道先验的N。

有没有办法从熊猫的excel文档中获得表的列表?


当前回答

如果你读excel文件

dfs = pd.ExcelFile('file')

然后使用

dfs.sheet_names
dfs.parse('sheetname')

另一种变体

df = pd.read_excel('file', sheet_name='sheetname')

其他回答

你仍然可以使用ExcelFile类(和sheet_names属性):

xl = pd.ExcelFile('foo.xls')

xl.sheet_names  # see all sheet names

xl.parse(sheet_name)  # read a specific sheet to DataFrame

更多选项参见文档解析…

这是我发现的最快的方法,灵感来自@divingTobi的答案。所有基于xlrd、openpyxl或pandas的答案对我来说都很慢,因为它们都先加载整个文件。

from zipfile import ZipFile
from bs4 import BeautifulSoup  # you also need to install "lxml" for the XML parser

with ZipFile(file) as zipped_file:
    summary = zipped_file.open(r'xl/workbook.xml').read()
soup = BeautifulSoup(summary, "xml")
sheets = [sheet.get("name") for sheet in soup.find_all("sheet")]

您应该显式地将第二个参数(sheetname)指定为None。是这样的:

 df = pandas.read_excel("/yourPath/FileName.xlsx", None);

"df"都是一个数据帧字典,你可以通过运行这个来验证:

df.keys()

结果是这样的:

[u'201610', u'201601', u'201701', u'201702', u'201703', u'201704', u'201705', u'201706', u'201612', u'fund', u'201603', u'201602', u'201605', u'201607', u'201606', u'201608', u'201512', u'201611', u'201604']

详情请参考熊猫文档:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html

从excel (xls)中检索表名的最简单方法。, xlsx)为:

tabs = pd.ExcelFile("path").sheet_names 
print(tabs)

然后,要读取和存储特定工作表的数据(例如,工作表名称为“Sheet1”,“Sheet2”等),请输入“Sheet2”,例如:

data = pd.read_excel("path", "Sheet2") 
print(data)
from openpyxl import load_workbook

sheets = load_workbook(excel_file, read_only=True).sheetnames

对于我正在使用的5MB Excel文件,没有read_only标志的load_workbook花了8.24秒。对于read_only标志,只需要39.6 ms。如果您仍然希望使用Excel库而不使用xml解决方案,那么这比解析整个文件的方法要快得多。