新版Pandas使用以下界面加载Excel文件:
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
但如果我不知道有哪些床单呢?
例如,我正在工作的excel文件,如下表
数据1,数据2…,数据N, foo, bar
但我不知道先验的N。
有没有办法从熊猫的excel文档中获得表的列表?
新版Pandas使用以下界面加载Excel文件:
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
但如果我不知道有哪些床单呢?
例如,我正在工作的excel文件,如下表
数据1,数据2…,数据N, foo, bar
但我不知道先验的N。
有没有办法从熊猫的excel文档中获得表的列表?
当前回答
import pandas as pd
path = "\\DB\\Expense\\reconcile\\"
file_name = "202209-v01.xlsx"
df = pd.read_excel(path + file_name, None)
print(df)
sheet_names = list(df.keys())
# print last sheet name
print(sheet_names[len(sheet_names)-1])
last_month = df.get(sheet_names[len(sheet_names)-1])
print(last_month)
其他回答
你仍然可以使用ExcelFile类(和sheet_names属性):
xl = pd.ExcelFile('foo.xls')
xl.sheet_names # see all sheet names
xl.parse(sheet_name) # read a specific sheet to DataFrame
更多选项参见文档解析…
import pandas as pd
path = "\\DB\\Expense\\reconcile\\"
file_name = "202209-v01.xlsx"
df = pd.read_excel(path + file_name, None)
print(df)
sheet_names = list(df.keys())
# print last sheet name
print(sheet_names[len(sheet_names)-1])
last_month = df.get(sheet_names[len(sheet_names)-1])
print(last_month)
基于@dhwanil_shah的回答,您不需要提取整个文件。zf。打开它可以直接从压缩文件中读取。
import xml.etree.ElementTree as ET
import zipfile
def xlsxSheets(f):
zf = zipfile.ZipFile(f)
f = zf.open(r'xl/workbook.xml')
l = f.readline()
l = f.readline()
root = ET.fromstring(l)
sheets=[]
for c in root.findall('{http://schemas.openxmlformats.org/spreadsheetml/2006/main}sheets/*'):
sheets.append(c.attrib['name'])
return sheets
连续的两个readline很难看,但是内容只在文本的第二行。不需要解析整个文件。
这个解决方案似乎比read_excel版本快得多,而且很可能也比完整的提取版本快得多。
这是我发现的最快的方法,灵感来自@divingTobi的答案。所有基于xlrd、openpyxl或pandas的答案对我来说都很慢,因为它们都先加载整个文件。
from zipfile import ZipFile
from bs4 import BeautifulSoup # you also need to install "lxml" for the XML parser
with ZipFile(file) as zipped_file:
summary = zipped_file.open(r'xl/workbook.xml').read()
soup = BeautifulSoup(summary, "xml")
sheets = [sheet.get("name") for sheet in soup.find_all("sheet")]
#It will work for Both '.xls' and '.xlsx' by using pandas
import pandas as pd
excel_Sheet_names = (pd.ExcelFile(excelFilePath)).sheet_names
#for '.xlsx' use only openpyxl
from openpyxl import load_workbook
excel_Sheet_names = (load_workbook(excelFilePath, read_only=True)).sheet_names