从Udacity的深度学习课程中,y_i的softmax仅仅是指数除以整个Y向量的指数之和:
其中S(y_i)是y_i的软最大函数e是指数函数j是no。输入向量Y中的列。
我试过以下几种方法:
import numpy as np
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
scores = [3.0, 1.0, 0.2]
print(softmax(scores))
返回:
[ 0.8360188 0.11314284 0.05083836]
但建议的解决方案是:
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x) / np.sum(np.exp(x), axis=0)
它产生与第一个实现相同的输出,尽管第一个实现显式地取每列与Max的差值,然后除以和。
有人能用数学方法解释一下吗?一个是对的,另一个是错的?
实现在代码和时间复杂度方面是否相似?哪个更有效率?
softmax函数是一种激活函数,它将数字转换为和为1的概率。softmax函数输出一个向量,表示结果列表的概率分布。它也是深度学习分类任务中使用的核心元素。
当我们有多个类时,使用Softmax函数。
它对于找出有最大值的类很有用。概率。
Softmax函数理想地用于输出层,在那里我们实际上试图获得定义每个输入类的概率。
取值范围是0 ~ 1。
Softmax函数将对数[2.0,1.0,0.1]转换为概率[0.7,0.2,0.1],概率和为1。Logits是神经网络最后一层输出的原始分数。在激活发生之前。为了理解softmax函数,我们必须看看第(n-1)层的输出。
softmax函数实际上是一个arg max函数。这意味着它不会返回输入中的最大值,而是返回最大值的位置。
例如:
softmax之前
X = [13, 31, 5]
softmax后
array([1.52299795e-08, 9.99999985e-01, 5.10908895e-12]
代码:
import numpy as np
# your solution:
def your_softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
# correct solution:
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
# only difference