(好吧…这里有很多困惑,在问题和答案中…)
首先,这两个解决方案(即你的解决方案和建议的解决方案)是不相等的;它们恰好只在一维分数数组的特殊情况下是等价的。如果你也尝试过Udacity测试提供的例子中的二维分数数组,你就会发现它。
就结果而言,两个解决方案之间的唯一实际区别是axis=0参数。为了了解情况,让我们试试你的解决方案(your_softmax),其中唯一的区别是axis参数:
import numpy as np
# your solution:
def your_softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
# correct solution:
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0) # only difference
正如我所说,对于一个1-D分数数组,结果确实是相同的:
scores = [3.0, 1.0, 0.2]
print(your_softmax(scores))
# [ 0.8360188 0.11314284 0.05083836]
print(softmax(scores))
# [ 0.8360188 0.11314284 0.05083836]
your_softmax(scores) == softmax(scores)
# array([ True, True, True], dtype=bool)
尽管如此,以下是Udacity测试中给出的二维分数数组作为测试示例的结果:
scores2D = np.array([[1, 2, 3, 6],
[2, 4, 5, 6],
[3, 8, 7, 6]])
print(your_softmax(scores2D))
# [[ 4.89907947e-04 1.33170787e-03 3.61995731e-03 7.27087861e-02]
# [ 1.33170787e-03 9.84006416e-03 2.67480676e-02 7.27087861e-02]
# [ 3.61995731e-03 5.37249300e-01 1.97642972e-01 7.27087861e-02]]
print(softmax(scores2D))
# [[ 0.09003057 0.00242826 0.01587624 0.33333333]
# [ 0.24472847 0.01794253 0.11731043 0.33333333]
# [ 0.66524096 0.97962921 0.86681333 0.33333333]]
结果是不同的——第二个结果确实与Udacity测试中预期的结果相同,其中所有列的总和确实为1,而第一个(错误的)结果不是这样。
所以,所有的麻烦实际上是一个实现细节-轴参数。根据numpy。和文档:
默认值axis=None将对输入数组的所有元素求和
而这里我们想按行求和,因此axis=0。对于一个一维数组,(唯一的)行和所有元素的和恰好是相同的,因此在这种情况下你会得到相同的结果…
抛开轴的问题不谈,你的实现(即你选择先减去最大值)实际上比建议的解决方案更好!事实上,这是实现softmax函数的推荐方式-请参阅这里的理由(数值稳定性,也在这里的一些其他答案中指出)。