在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?
例如:
start = time.clock()
... do something
elapsed = (time.clock() - start)
vs.
start = time.time()
... do something
elapsed = (time.time() - start)
在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?
例如:
start = time.clock()
... do something
elapsed = (time.clock() - start)
vs.
start = time.time()
... do something
elapsed = (time.time() - start)
当前回答
据我所知,time.clock()具有系统所允许的最大精度。
其他回答
这取决于你在乎什么。如果您指的是WALL TIME(即墙上时钟上的时间),则TIME .clock()不能提供精度,因为它可能管理CPU时间。
Clock() ->浮点数
返回CPU时间或进程启动后的实时时间 第一次调用clock()。这和系统的精度一样高 记录。
Time() ->浮点数
返回当前时间(以秒为单位)。 如果系统时钟提供,可能会出现几分之一秒。
通常time()更精确,因为操作系统存储进程运行时间的精度与存储系统时间(即实际时间)的精度不同。
其他人回答了re: time.time() vs. time.clock()。
但是,如果您是为了基准测试/分析目的而对代码块的执行进行计时,则应该查看timeit模块。
在Linux上,time()比clock()具有更好的精度。Clock()的精度小于10毫秒。而time()提供完美的精度。 我的测试用的是CentOS 6.4和python 2.6
using time():
1 requests, response time: 14.1749382019 ms
2 requests, response time: 8.01301002502 ms
3 requests, response time: 8.01491737366 ms
4 requests, response time: 8.41021537781 ms
5 requests, response time: 8.38804244995 ms
使用时钟():
1 requests, response time: 10.0 ms
2 requests, response time: 0.0 ms
3 requests, response time: 0.0 ms
4 requests, response time: 10.0 ms
5 requests, response time: 0.0 ms
6 requests, response time: 0.0 ms
7 requests, response time: 0.0 ms
8 requests, response time: 0.0 ms
从3.3开始,time.clock()已弃用,建议使用time.process_time()或time.perf_counter()。
在2.7之前,根据time模块docs:
time.clock() On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms. On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.
此外,还有timeit模块用于对代码段进行基准测试。