如何在Python中声明常量?

在Java中,我们做:

public static final String CONST_NAME = "Name";

当前回答

你可以使用Tuple常量变量:

tuple是一个有序且不可更改的集合

my_tuple = (1, "Hello", 3.4)
print(my_tuple[0])

其他回答

在python中,常量只是一个变量,名称全大写,单词之间用下划线分隔,

e.g

Days_in_week = 7

该值是可变的,即您可以更改它。但既然名字的规则告诉你是常数,你为什么要这么做呢?我是说,这毕竟是你的项目!

这是python中采用的方法。出于同样的原因,没有private关键字。用下划线作为名称的前缀,您就知道它是私有的。代码可以打破规则....就像程序员可以删除private关键字一样。

Python可以添加一个const关键字…但是程序员可以删除关键字,然后如果他们想要更改常量,但为什么要这样做呢?如果你想打破规则,你可以改变规则。但如果名字的意思已经很清楚了,为什么还要费心打破规则呢?

也许在某些单元测试中,对值应用更改是有意义的?看看一周8天会发生什么,尽管在现实世界中,一周的天数是不能改变的。如果语言阻止你做一个例外,如果只有这一个情况,你需要打破规则……然后您将不得不停止将它声明为常量,即使它在应用程序中仍然是常量,并且只有这个测试用例来查看如果它被更改会发生什么。

全大写的名称告诉您它是一个常量。这才是重要的。没有一种语言强制约束代码,无论如何你都可以修改。

这就是python的哲学。

在其他语言中没有const关键字,但是可以创建一个具有“getter函数”来读取数据,但没有“setter函数”来重写数据的Property。这从本质上保护标识符不被更改。

下面是一个使用class属性的替代实现:

请注意,对于想了解常量的读者来说,代码远非简单。见下面的解释。

def constant(f):
    def fset(self, value):
        raise TypeError
    def fget(self):
        return f()
    return property(fget, fset)

class _Const(object):
    @constant
    def FOO():
        return 0xBAADFACE
    @constant
    def BAR():
        return 0xDEADBEEF

CONST = _Const()

print(hex(CONST.FOO))  # -> '0xbaadfaceL'

CONST.FOO = 0
##Traceback (most recent call last):
##  File "example1.py", line 22, in <module>
##    CONST.FOO = 0
##  File "example1.py", line 5, in fset
##    raise TypeError
##TypeError

代码的解释:

定义一个接受表达式的函数常量,并使用它来构造一个“getter”——一个仅返回表达式值的函数。 setter函数引发TypeError,因此它是只读的 使用我们刚刚创建的常量函数作为装饰来快速定义只读属性。


用另一种更传统的方式:

(代码相当棘手,下面有更多解释)

class _Const(object):
    def FOO():
        def fset(self, value):
            raise TypeError
        def fget(self):
            return 0xBAADFACE
        return property(**locals())
    FOO = FOO()  # Define property.

CONST = _Const()

print(hex(CONST.FOO))  # -> '0xbaadfaceL'

CONST.FOO = 0
##Traceback (most recent call last):
##  File "example2.py", line 16, in <module>
##    CONST.FOO = 0
##  File "example2.py", line 6, in fset
##    raise TypeError
##TypeError

要定义标识符FOO,首先定义两个函数(fset, fget -名称由我选择)。 然后使用内置的属性函数构造一个可以“set”或“get”的对象。 注意属性函数的前两个参数名为fset和fget。 利用我们为自己的getter和setter选择这些名称的事实,并使用应用于该作用域的所有本地定义的**(双星号)创建一个关键字字典,将参数传递给属性函数

在Python中创建常量的更好方法是从 优秀的attrs库,这很有帮助 Python程序员创建类时不使用样板文件。的 Short-con package也有同样的功能 常量,提供一个方便的包装器 attr.make_class。[声明:我是short-con的作者。]

值可以通过dict或kwargs显式声明 例子也有同样的作用。常量()函数支持的所有特性 库和cons()是简单使用kwarg的辅助程序。

from short_con import constants, cons

Pieces = constants('Pieces', dict(king = 0, queen = 9, rook = 5, bishop = 3, knight = 3, pawn = 1))
Pieces = cons('Pieces', king = 0, queen = 9, rook = 5, bishop = 3, knight = 3, pawn = 1)

的值相同(或可以从其导出)的情况 属性名,使用更加紧凑。只提供名称作为 空格分隔的字符串、列表或元组。

NAMES = 'KING QUEEN ROOK BISHOP KNIGHT PAWN'
xs = NAMES.split()

Pieces = constants('Pieces', NAMES)      # All of these do the same thing.
Pieces = constants('Pieces', xs)
Pieces = constants('Pieces', tuple(xs))

基于名称的用法支持一些风格约定:大写或 小写的属性名,以及枚举样式的值。

方法创建的常量不同,底层值可以直接访问 内置枚举库:

Pieces.QUEEN        # short-con usage
Pieces.QUEEN.value  # enum library usage

对象直接可迭代,可转换为其他集合:

for name, value in Pieces:
    print(name, value)

d = dict(Pieces)
tups = list(Pieces)

元组在技术上属于常量,因为如果您试图更改其中一个值,元组将引发错误。如果你想声明一个只有一个值的元组,那么在它唯一的值后面加一个逗号,就像这样:

my_tuple = (0 """Or any other value""",)

要检查这个变量的值,使用类似这样的方法:

if my_tuple[0] == 0:
    #Code goes here

如果您试图更改此值,将引发一个错误。

这里是我创建的一些习语的集合,试图改进一些已有的答案。

我知道常量的使用不是python式的,你不应该在家里这样做!

然而,Python是如此动态的语言!这个论坛展示了如何创建看起来和感觉起来像常量的构造。这个答案的主要目的是探索语言可以表达什么。

请不要对我太苛刻。

为了了解更多细节,我写了一篇关于这些习语的博客。

在这篇文章中,我将调用一个常量变量来引用一个常量值(不可变或其他)。此外,我说,当一个变量引用了一个客户机代码无法更新的可变对象时,它的值就被冻结了。

常量空间(SpaceConstants)

这个习惯用法创建了一个看起来像常量变量的名称空间(又名SpaceConstants)。它是Alex Martelli对代码片段的修改,以避免使用模块对象。具体地说,这种修改使用了我称之为类工厂的东西,因为在SpaceConstants函数中定义了一个名为SpaceConstants的类,并返回了它的一个实例。

我在stackoverflow和一篇博客文章中探讨了如何使用类工厂在Python中实现基于策略的设计。

def SpaceConstants():
    def setattr(self, name, value):
        if hasattr(self, name):
            raise AttributeError(
                "Cannot reassign members"
            )
        self.__dict__[name] = value
    cls = type('SpaceConstants', (), {
        '__setattr__': setattr
    })
    return cls()

sc = SpaceConstants()

print(sc.x) # raise "AttributeError: 'SpaceConstants' object has no attribute 'x'"
sc.x = 2 # bind attribute x
print(sc.x) # print "2"
sc.x = 3 # raise "AttributeError: Cannot reassign members"
sc.y = {'name': 'y', 'value': 2} # bind attribute y
print(sc.y) # print "{'name': 'y', 'value': 2}"
sc.y['name'] = 'yprime' # mutable object can be changed
print(sc.y) # print "{'name': 'yprime', 'value': 2}"
sc.y = {} # raise "AttributeError: Cannot reassign members"

一个冻结值的空间(SpaceFrozenValues)

下一个习惯用法是对SpaceConstants的修改,其中冻结了引用的可变对象。这个实现利用了setattr和getattr函数之间的共享闭包。可变对象的值由函数共享闭包内的变量缓存定义复制和引用。它形成了我所说的可变对象的闭包保护副本。

在使用这种习惯用法时必须小心,因为getattr通过执行深度复制来返回缓存的值。该操作可能对大型对象的性能产生重大影响!

from copy import deepcopy

def SpaceFrozenValues():
    cache = {}
    def setattr(self, name, value):
        nonlocal cache
        if name in cache:
            raise AttributeError(
                "Cannot reassign members"
            )
        cache[name] = deepcopy(value)
    def getattr(self, name):
        nonlocal cache
        if name not in cache:
            raise AttributeError(
                "Object has no attribute '{}'".format(name)
            )
        return deepcopy(cache[name])
    cls = type('SpaceFrozenValues', (),{
        '__getattr__': getattr,
        '__setattr__': setattr
    })
    return cls()

fv = SpaceFrozenValues()
print(fv.x) # AttributeError: Object has no attribute 'x'
fv.x = 2 # bind attribute x
print(fv.x) # print "2"
fv.x = 3 # raise "AttributeError: Cannot reassign members"
fv.y = {'name': 'y', 'value': 2} # bind attribute y
print(fv.y) # print "{'name': 'y', 'value': 2}"
fv.y['name'] = 'yprime' # you can try to change mutable objects
print(fv.y) # print "{'name': 'y', 'value': 2}"
fv.y = {} # raise "AttributeError: Cannot reassign members"

常量空间(ConstantSpace)

这个习惯用法是常量变量或ConstantSpace的不可变名称空间。它结合了Jon Betts在stackoverflow中给出的非常简单的答案和类工厂。

def ConstantSpace(**args):
    args['__slots__'] = ()
    cls = type('ConstantSpace', (), args)
    return cls()

cs = ConstantSpace(
    x = 2,
    y = {'name': 'y', 'value': 2}
)

print(cs.x) # print "2"
cs.x = 3 # raise "AttributeError: 'ConstantSpace' object attribute 'x' is read-only"
print(cs.y) # print "{'name': 'y', 'value': 2}"
cs.y['name'] = 'yprime' # mutable object can be changed
print(cs.y) # print "{'name': 'yprime', 'value': 2}"
cs.y = {} # raise "AttributeError: 'ConstantSpace' object attribute 'x' is read-only"
cs.z = 3 # raise "AttributeError: 'ConstantSpace' object has no attribute 'z'"

冰冻空间(FrozenSpace)

这个习惯用法是冻结变量或FrozenSpace的不可变名称空间。它通过关闭生成的FrozenSpace类使每个变量成为受保护的属性,从前面的模式派生而来。

from copy import deepcopy

def FreezeProperty(value):
    cache = deepcopy(value)
    return property(
        lambda self: deepcopy(cache)
    )

def FrozenSpace(**args):
    args = {k: FreezeProperty(v) for k, v in args.items()}
    args['__slots__'] = ()
    cls = type('FrozenSpace', (), args)
    return cls()

fs = FrozenSpace(
    x = 2,
    y = {'name': 'y', 'value': 2}
)

print(fs.x) # print "2"
fs.x = 3 # raise "AttributeError: 'FrozenSpace' object attribute 'x' is read-only"
print(fs.y) # print "{'name': 'y', 'value': 2}"
fs.y['name'] = 'yprime' # try to change mutable object
print(fs.y) # print "{'name': 'y', 'value': 2}"
fs.y = {} # raise "AttributeError: 'FrozenSpace' object attribute 'x' is read-only"
fs.z = 3 # raise "AttributeError: 'FrozenSpace' object has no attribute 'z'"