我来自Java世界,正在阅读Bruce Eckels的《Python 3 Patterns, Recipes and idiom》。

在阅读有关类的内容时,会继续说在Python中不需要声明实例变量。你只需要在构造函数中使用它们,它们就在那里了。

例如:

class Simple:
    def __init__(self, s):
        print("inside the simple constructor")
        self.s = s

    def show(self):
        print(self.s)

    def showMsg(self, msg):
        print(msg + ':', self.show())

如果这是真的,那么任何Simple类的对象都可以改变类外变量s的值。

例如:

if __name__ == "__main__":
    x = Simple("constructor argument")
    x.s = "test15" # this changes the value
    x.show()
    x.showMsg("A message")

在Java中,我们已经学习了公共/私有/受保护变量。这些关键字是有意义的,因为有时您希望类中的变量在类之外没有人可以访问。

为什么Python中不需要这个?


当前回答

隐私和受保护的概念非常重要。但Python只是一个用于原型设计和快速开发的工具,可用的开发资源有限,这就是为什么Python中没有严格遵守一些保护级别的原因。你可以在类成员中使用“__”。它工作正常,但看起来不够好。对该字段的每次访问都包含这些字符。

此外,您可以注意到Python OOP概念并不完美。Smalltalk或Ruby更接近于纯OOP概念。甚至c#或Java也更接近。

Python是一个非常好的工具。但它是一种简化的面向对象语言。从语法和概念上简化。Python存在的主要目标是使开发人员能够以非常快的方式编写具有高抽象级别的易于阅读的代码。

其他回答

我唯一一次使用私有变量是当我需要在写入或读取变量时做其他事情,因此我需要强制使用setter和/或getter。

正如前面所述,这又涉及到文化。我一直在工作的项目中,读取和写入其他类变量是自由的。当一个实现被弃用时,识别使用该函数的所有代码路径需要更长的时间。当强制使用setter和getter时,可以很容易地编写调试语句来识别已调用的废弃方法和调用它的代码路径。

当你在一个任何人都可以编写扩展的项目中,通知用户那些将在几个版本中消失的废弃方法,因此在升级时将模块破坏降到最低是至关重要的。

所以我的答案是;如果您和您的同事维护一个简单的代码集,那么保护类变量并不总是必要的。如果您正在编写一个可扩展的系统,那么当对核心的更改需要被使用该代码的所有扩展捕获时,它就变得必不可少。

Python对私有标识符的支持有限,通过一个自动在任何以两个下划线开头的标识符前加上类名的特性。在大多数情况下,这对程序员来说是透明的,但最终结果是任何以这种方式命名的变量都可以用作私有变量。

更多信息请参见这里。

一般来说,与其他语言相比,Python的面向对象实现有点原始。但实际上我很享受这个过程。这是一个概念上非常简单的实现,非常适合该语言的动态风格。

在下划线约定中有一种私有变量的变体。

In [5]: class Test(object):
   ...:     def __private_method(self):
   ...:         return "Boo"
   ...:     def public_method(self):
   ...:         return self.__private_method()
   ...:

In [6]: x = Test()

In [7]: x.public_method()
Out[7]: 'Boo'

In [8]: x.__private_method()
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-8-fa17ce05d8bc> in <module>()
----> 1 x.__private_method()

AttributeError: 'Test' object has no attribute '__private_method'

有一些细微的区别,但是为了编程模式意识形态的纯洁性,它已经足够好了。

有一些@private decorator的例子更紧密地实现了这个概念,但你的情况可能会有所不同。可以说,也可以编写使用meta的类定义。

私有变量在Python中或多或少是一种hack:解释器会故意重命名变量。

class A:
    def __init__(self):
        self.__var = 123
    def printVar(self):
        print self.__var

现在,如果你试图在类定义之外访问__var,它会失败:

>>> x = A()
>>> x.__var # this will return error: "A has no attribute __var"

>>> x.printVar() # this gives back 123

但你可以很容易地摆脱这种情况:

>>> x.__dict__ # this will show everything that is contained in object x
               # which in this case is something like {'_A__var' : 123}

>>> x._A__var = 456 # you now know the masked name of private variables
>>> x.printVar() # this gives back 456

你可能知道OOP中的方法是这样调用的:x. printvar () => A.printVar(x)。如果A.printVar()可以访问x中的某个字段,那么这个字段也可以在A.printVar()之外访问…毕竟,函数是为可重用性而创建的,其中的语句并没有任何特殊的功能。

隐私和受保护的概念非常重要。但Python只是一个用于原型设计和快速开发的工具,可用的开发资源有限,这就是为什么Python中没有严格遵守一些保护级别的原因。你可以在类成员中使用“__”。它工作正常,但看起来不够好。对该字段的每次访问都包含这些字符。

此外,您可以注意到Python OOP概念并不完美。Smalltalk或Ruby更接近于纯OOP概念。甚至c#或Java也更接近。

Python是一个非常好的工具。但它是一种简化的面向对象语言。从语法和概念上简化。Python存在的主要目标是使开发人员能够以非常快的方式编写具有高抽象级别的易于阅读的代码。