周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

B*树

这是一种以更昂贵的插入为代价的高效搜索的B树。

其他回答

跳过列表非常整洁。

维基百科跳过列表是一种概率数据结构,基于多个并行、排序的链接列表,其效率与二进制搜索树相当(大多数操作的顺序日志n平均时间)。

它们可以作为平衡树的替代(使用概率平衡而不是严格执行平衡)。它们很容易实现,而且比红黑树更快。我认为他们应该在每一个优秀的程序员工具箱中。

如果你想深入了解跳过列表,这里有一个麻省理工学院算法简介讲座视频的链接。

此外,这里还有一个Java小程序,直观地演示了跳过列表。

我以前和WPL Trees一起过得很好。最小化分支加权路径长度的树变体。权重由节点访问决定,以便频繁访问的节点迁移到更靠近根的位置。不知道它们与八字树相比如何,因为我从未使用过。

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中

跳过列表实际上非常棒:http://en.wikipedia.org/wiki/Skip_list