所有现有的答案似乎都很全面,但有一个术语问题,我想在我的答案中解决这个问题。
什么是事件来源?
似乎如果你看五个不同的地方,你会得到这个问题的五个不同答案。
然而,如果你看一下Greg Young在2010年的论文,它从第32页开始就很好地总结了这个想法,但它没有包含最终的定义,所以我自己大胆地阐述了它。
事件源是一种持久化状态的方法。不是由于状态突变而将一个状态替换为另一个状态,而是持久化表示该突变的事件。因此,您总是可以通过读取所有实体事件并按顺序应用这些状态变化来获得实体的当前状态。通过这样做,当前实体状态变成了该实体所有事件的左侧折叠。
什么是“好的”事件存储(数据库)?
任何持久性机制都需要执行两个基本操作:
将新的实体状态保存到数据库中
从数据库检索实体状态
这就是Greg谈论实体流概念的地方,其中每个实体都有自己的事件流,由实体id唯一标识。当您有一个数据库,它能够通过实体id读取所有实体事件(读取流)时,使用Event Sourcing不是一个困难的问题。
As Greg's paper mentions Event Sourcing in the context of CQRS, he explains why those two concepts play nicely with each other. Although, you have a database full of atomic state mutations for a bunch of entities, querying across the current state of multiple entities is hard work. The issue is solved by separating the transactional (event-sourced) store that is used as the source of truth, and the reporting (query, read) store, which is used for reports and queries of the current system state across multiple entities. The query store doesn't contain any events, it contains the projected state of multiple entities, composed based on the needs for querying data. It doesn't necessarily need to contain snapshots of each entity, you are free to choose the shape and form of the query model, as long as you can project your events to that model.
出于这个原因,“合适的”事件数据库需要支持所谓的_real-time订阅,它将向要投射的查询模型交付新的(和历史的,如果我们需要重播的话)事件。
We also know that we need the entity state in hand when making decisions about its allowed state transition. For example, a money transfer that has already been executed, should not be executed twice. As the query model is by definition stale (even for milliseconds), it becomes dangerous when you make decisions on stale data. Therefore, we use the most recent, and totally consistent state from the transactional (event) store to reconstruct the entity state when executing operations on the entity.
有时,您还希望从数据库中删除整个实体,这意味着删除其所有事件。例如,这可能是符合gdpr的要求。
那么,作为事件存储的数据库需要哪些属性才能使事件源系统正常工作呢?就几个:
使用实体id作为键,将事件附加到有序的、只能追加的日志中
使用实体id作为键,按顺序加载单个实体的所有事件
删除给定实体的所有事件,使用实体id作为键
支持实时订阅项目事件以查询模型
卡夫卡是什么?
Kafka是一个高度可伸缩的消息代理,基于仅追加日志。Kafka中的消息是根据主题生成的,现在一个主题通常包含一个单独的消息类型,以便更好地使用模式注册表。主题可以是CPU -load,其中我们为许多服务器生成CPU负载的时间序列测量。
Kafka主题可以分区。分区允许并行地生成和使用消息。消息只在一个分区内排序,通常需要使用一个可预测的分区键,这样Kafka就可以跨分区分发消息。
现在,让我们看一下清单:
Can you append events to Kafka? Yes, it's called produce. Can you append events with the entity id as a key? Not really, as the partition key is used to distribute messages across partitions, so it's really just a partition key. One thing mentioned in another answer is optimistic concurrency. If you worked with a relational database, you probably used the Version column. For NoSQL databases you might have used the document eTag. Both allow you to ensure that you update the entity that is in the state that you know about, and it hasn't been mutated during your operation. Kafka does not provide you with anything to support optimistic concurrency for such state transitions.
Can you read all the events for a single entity from a Kafka topic, using the entity id as a key? No, you can't. As Kafka is not a database, it has no index on its topics, so the only way to retrieve messages from a topic is to consume them.
Can you delete events from Kafka using the entity id as a key? No, it's impossible. Messages get removed from the topic only after their retention period expires.
Can you subscribe to a Kafka topic to receive live (and historical) events in order, so you can project them to your query models? Yes, and because topics are partitioned, you can scale out your projections to increase performance.
那么,为什么人们一直这样做呢?
I believe that the reason why a lot of people claim that Kafka is a good choice to be an event store for event-sourced systems is that they confuse Event Sourcing with simple pub-sub (you can use a hype word "EDA", or Event-Driven Architecture instead). Using message brokers to fan out events to other system components is a pattern known for decades. The issue with "classic" brokers as that messages are gone as soon as they are consumed, so you cannot build something like a query model that would be built from history. Another issue is that when projecting events, you want them to be consumed in the same order as they are produced, and "classic" brokers normally aim to support the competing consumers pattern, which doesn't support ordered message processing by definition. Make no mistake, Kafka does not support competing consumers, it has a limitation of one consumer per one or more partitions, but not the other way around. Kafka solved the ordering issue, and historical messages retention issue quite nicely. So, you can now build query models from events you push through Kafka. But that's not what the original idea of Event Sourcing is about, it's what we today call EDA. As soon as this separation is clear, we, hopefully, stop seeing claims that any append-only event log is a good candidate to be an event store database for event-sourced systems.